Hyperplane Arrangements with a Lattice of Regions.
A. Björner, P.H. Edelman, G.M. Ziegler (1990)
Discrete & computational geometry
Similarity:
A. Björner, P.H. Edelman, G.M. Ziegler (1990)
Discrete & computational geometry
Similarity:
Berman, Leah Wrenn (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
J.P. Roudneff (1988)
Discrete & computational geometry
Similarity:
G.M. Ziegler, N.E. Mnëv (1993)
Discrete & computational geometry
Similarity:
J. Richter-Gebert, N.E. Mnëv (1993)
Discrete & computational geometry
Similarity:
J. Linhart (1993)
Discrete & computational geometry
Similarity:
William A. Arvola (1991)
Manuscripta mathematica
Similarity:
H. Edelsbrunner, Raimund Seidel (1986)
Discrete & computational geometry
Similarity:
Cazals, Frédéric (1997)
Experimental Mathematics
Similarity:
Karáné, G.S. (1994)
Beiträge zur Algebra und Geometrie
Similarity:
K. Kedem, D. Halperin, E.M. Arkin, J. S. B. Mitchell, N. Naor (1995)
Discrete & computational geometry
Similarity:
Masahiko Yoshinaga (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
These are the expanded notes of the lecture by the author in “Arrangements in Pyrénées”, June 2012. We are discussing relations of freeness and splitting problems of vector bundles, several techniques proving freeness of hyperplane arrangements, K. Saito’s theory of primitive derivations for Coxeter arrangements, their application to combinatorial problems and related conjectures.
T. Bisztriczky, J.W. Lorimer (1994)
Aequationes mathematicae
Similarity: