Displaying similar documents to “Harmonic analysis on S U ( n , n ) / S L ( n , ) × + .”

Harmonic analysis for spinors on real hyperbolic spaces

Roberto Camporesi, Emmanuel Pedon (2001)

Colloquium Mathematicae

Similarity:

We develop the L² harmonic analysis for (Dirac) spinors on the real hyperbolic space Hⁿ(ℝ) and give the analogue of the classical notions and results known for functions and differential forms: we investigate the Poisson transform, spherical function theory, spherical Fourier transform and Fourier transform. Very explicit expressions and statements are obtained by reduction to Jacobi analysis on L²(ℝ). As applications, we describe the exact spectrum of the Dirac operator, study the Abel...

An application of shift operators to ordered symmetric spaces

Nils Byrial Andersen, Jérémie M. Unterberger (2002)

Annales de l’institut Fourier

Similarity:

We study the action of elementary shift operators on spherical functions on ordered symmetric spaces m , n of Cayley type, where m denotes the multiplicity of the short roots and n the rank of the symmetric space. For m even we apply this to prove a Paley-Wiener theorem for the spherical Laplace transform defined on m , n by a reduction to the rank 1 case. Finally we generalize our notions and results to B C n type root systems.

The Laplace transform on a Boehmian space

V. Karunakaran, C. Prasanna Devi (2010)

Annales Polonici Mathematici

Similarity:

In the literature a Boehmian space containing all right-sided Laplace transformable distributions is defined and studied. Besides obtaining basic properties of this Laplace transform, an inversion formula is also obtained. In this paper we shall improve upon two theorems one of which relates to the continuity of this Laplace transform and the other is concerned with the inversion formula.

Fourier transform of Schwartz functions on the Heisenberg group

Francesca Astengo, Bianca Di Blasio, Fulvio Ricci (2013)

Studia Mathematica

Similarity:

Let H₁ be the 3-dimensional Heisenberg group. We prove that a modified version of the spherical transform is an isomorphism between the space 𝓢ₘ(H₁) of Schwartz functions of type m and the space 𝓢(Σₘ) consisting of restrictions of Schwartz functions on ℝ² to a subset Σₘ of the Heisenberg fan with |m| of the half-lines removed. This result is then applied to study the case of general Schwartz functions on H₁.

Some extensions of a certain integral transform to a quotient space of generalized functions

Shrideh K.Q. Al-Omari, Jafar F. Al-Omari (2015)

Open Mathematics

Similarity:

In this paper, we establish certain spaces of generalized functions for a class of ɛs2,1 transforms. We give the definition and derive certain properties of the extended ɛs2,1 transform in a context of Boehmian spaces. The extended ɛs2,1 transform is therefore well defined, linear and consistent with the classical ɛs2,1 transforms. Certain results are also established in some detail.