Displaying similar documents to “The manifold of Euclidean inner products of sphere.”

Contact topology and the structure of 5-manifolds with π 1 = 2

Hansjörg Geiges, Charles B. Thomas (1998)

Annales de l'institut Fourier

Similarity:

We prove a structure theorem for closed, orientable 5-manifolds M with fundamental group π 1 ( M ) = 2 and second Stiefel-Whitney class equal to zero on H 2 ( M ) . This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain 2 -quotients of  S 2 × S 3 .

A-manifolds on a principal torus bundle over an almost Hodge A-manifold base

Grzegorz Zborowski (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇X Ric(X, X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds.