Displaying similar documents to “Mathematical model for the basilar membrane as a two dimensional plate.”

The Influence of the Load Model and other Parameters on the Dynamic Behavior of Curved-in-Plane Bridges

Ioannis G. Raftoyiannis, George T. Michaltsos (2016)

Curved and Layered Structures

Similarity:

This paper deals with the dynamic behavior of curved-in-plane bridges where the effect of the bridge curvature radius, the moving load (vehicle) speed, the truck cant angle, the deck surface conditions and, mainly, the response accuracy depending on the vehicle model used are investigated. Besides the above parameters, the influence of several loading models is studied as well, especially the models of a concentrated load, a damped mass-load, a sequence of two concentrated loads and...

Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part I – Model Development

D. A. Hadjiloizi, A.L. Kalamkarov, Ch. Metti, A. V. Georgiades (2014)

Curved and Layered Structures

Similarity:

A comprehensive micromechanical model for the analysis of a smart composite piezo-magneto-thermoelastic thin plate with rapidly-varying thickness is developed in the present paper. A rigorous three-dimensional formulation is used as the basis of multiscale asymptotic homogenization. The asymptotic homogenization model is developed using static equilibrium equations and the quasi-static approximation of Maxwell’s equations. The work culminates in the derivation of a set of differential...

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Iñigo Arregui, J. Jesús Cendán, Carlos Vázquez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations,...

The bowed narrow plate model.

Russell, David L., White, Luther W. (2000)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Local Changes in Lipid Composition to Match Membrane Curvature

Rolf J. Ryham (2016)

Molecular Based Mathematical Biology

Similarity:

A continuum mechanical model based on the Helfrich Hamiltonian is devised to investigate the coupling between lipid composition and membrane curvature. Each monolayer in the bilayer is modeled as a freely deformable surface with a director field for lipid orientation. A scalar field for the mole fraction of two lipid types accounts for local changes in composition. It allows lipids to access monolayer regions favorable to their intrinsic curvature at the expense of increasing entropic...

Curvature Concentrations on the HIV-1 Capsid

Jiangguo Liu, Farrah Sadre-Marandi, Simon Tavener, Chaoping Chen (2015)

Molecular Based Mathematical Biology

Similarity:

It is known that the retrovirus capsids possess a fullerene-like structure. These caged polyhedral arrangements are built entirely from hexagons and exactly 12 pentagons according to the Euler theorem. Viral capsids are composed of capsid proteins, which create the hexagon and pentagon shapes by groups of six (hexamer) and five (pentamer) proteins. Different distributions of these 12 pentamers result in icosahedral, tubular, or conical shaped capsids. These pentamer clusters introduce...

Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part II – Applications

D. A. Hadjiloizi, A.L. Kalamkarov, Ch. Metti, A. V. Georgiades (2014)

Curved and Layered Structures

Similarity:

A comprehensive micromechanical model for the analysis of a smart composite piezo-magneto-thermoelastic thin plate with rapidly varying thickness is developed in Part I of thiswork. The asymptotichomogenization model is developed using static equilibrium equations and the quasi-static approximation of Maxwell’s equations. The work culminates in the derivation of general expressions for effective elastic, piezoelectric, piezomagnetic, dielectric permittivity and other coefficients. Among...