The classifying topos of a continuous groupoid. II
Ieke Moerdijk (1990)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
Ieke Moerdijk (1990)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Marco Grandis (2001)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
James Howie (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Bunge, Marta (2008)
Theory and Applications of Categories [electronic only]
Similarity:
Anders Kock, Ieke Moerdijk (1991)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Ieke Moerdijk (1991)
Annales de l'institut Fourier
Similarity:
For any etale topological groupoid (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space .
Jean Pradines (2004)
Open Mathematics
Similarity:
Starting with some motivating examples (classical atlases for a manifold, space of leaves of a foliation, group orbits), we propose to view a Lie groupoid as a generalized atlas for the “virtual structure” of its orbit space, the equivalence between atlases being here the smooth Morita equivalence. This “structure” keeps memory of the isotropy groups and of the smoothness as well. To take the smoothness into account, we claim that we can go very far by retaining just a few formal properties...
Bourn, Dominique (2006)
Theory and Applications of Categories [electronic only]
Similarity: