Coloring with no 2-colored 's.
Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)
Discussiones Mathematicae Graph Theory
Similarity:
For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs...
Jean-Sébastien Sereni, Zelealem B. Yilma (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Oleg V. Borodin, Anna O. Ivanova (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40 [...] +1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.
Ward, C., Szabó, S. (1994)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
P. Francis, S. Francis Raj (2016)
Discussiones Mathematicae Graph Theory
Similarity:
A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain bounds for the b- chromatic number of induced subgraphs in terms of the b-chromatic number of the original graph. This turns out to be...
Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)
Discussiones Mathematicae Graph Theory
Similarity:
A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.
Poppy Immel, Paul S. Wenger (2017)
Discussiones Mathematicae Graph Theory
Similarity:
A distinguishing coloring of a graph G is a coloring of the vertices so that every nontrivial automorphism of G maps some vertex to a vertex with a different color. The distinguishing number of G is the minimum k such that G has a distinguishing coloring where each vertex is assigned a color from {1, . . . , k}. A list assignment to G is an assignment L = {L(v)}v∈V (G) of lists of colors to the vertices of G. A distinguishing L-coloring of G is a distinguishing coloring of G where the...
J. Czap, S. Jendrol’, J. Valiska (2017)
Discussiones Mathematicae Graph Theory
Similarity:
Given three planar graphs F,H, and G, an (F,H)-WORM coloring of G is a vertex coloring such that no subgraph isomorphic to F is rainbow and no subgraph isomorphic to H is monochromatic. If G has at least one (F,H)-WORM coloring, then W−F,H(G) denotes the minimum number of colors in an (F,H)-WORM coloring of G. We show that (a) W−F,H(G) ≤ 2 if |V (F)| ≥ 3 and H contains a cycle, (b) W−F,H(G) ≤ 3 if |V (F)| ≥ 4 and H is a forest with Δ (H) ≥ 3, (c) W−F,H(G) ≤ 4 if |V (F)| ≥ 5 and H is...
Xu, Xiaodong, Radziszowski, Stanislaw P. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
LeSaulnier, Timothy D., Stocker, Christopher, Wenger, Paul S., West, Douglas B. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Wayne Goddard, Robert Melville (2017)
Open Mathematics
Similarity:
We consider vertex colorings where the number of colors given to specified subgraphs is restricted. In particular, given some fixed graph F and some fixed set A of positive integers, we consider (not necessarily proper) colorings of the vertices of a graph G such that, for every copy of F in G, the number of colors it receives is in A. This generalizes proper colorings, defective coloring, and no-rainbow coloring, inter alia. In this paper we focus on the case that A is a singleton set....
Hajo Broersma, Bert Marchal, Daniel Paulusma, A.N.M. Salman (2009)
Discussiones Mathematicae Graph Theory
Similarity:
We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V→ {1,2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial properties of backbone colorings have been studied for various types of backbones in a number of papers....
Sylwia Cichacz, Jakub Przybyło (2010)
Discussiones Mathematicae Graph Theory
Similarity:
In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors c(G) required to edge-color a simple graph G so that no two distinct vertices are incident to the same multiset of colors. We find the exact value of c(G) - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, χ₀(G), where sets, instead of multisets, are required to be distinct,...
Axenovich, Maria, Choi, JiHyeok (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Dennis Geller, Hudson Kronk (1974)
Fundamenta Mathematicae
Similarity:
Meenakshi, R., Sundararaghavan, P.S. (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity: