The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On almost sure convergence without the Radon-Nikodym property.”

Connections between recent Olech-type lemmas and Visintin's theorem

Erik Balder (1995)

Banach Center Publications

Similarity:

A recent Olech-type lemma of Artstein-Rzeżuchowski [2] and its generalization in [7] are shown to follow from Visintin's theorem, by exploiting a well-known property of extreme points of the integral of a multifunction.

Weak uniform normal structure and iterative fixed points of nonexpansive mappings

T. Domínguez Benavides, G. López Acedo, Hong Xu (1995)

Colloquium Mathematicae

Similarity:

This paper is concerned with weak uniform normal structure and iterative fixed points of nonexpansive mappings. Precisely, in Section 1, we show that the geometrical coefficient β(X) for a Banach space X recently introduced by Jimenez-Melado [8] is exactly the weakly convergent sequence coefficient WCS(X) introduced by Bynum [1] in 1980. We then show in Section 2 that all kinds of James' quasi-reflexive spaces have weak uniform normal structure. Finally, in Section 3, we show that in...

Kneser's theorems for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces

Mieczysław Cichoń, Ireneusz Kubiaczyk (1995)

Annales Polonici Mathematici

Similarity:

We investigate the structure of the set of solutions of the Cauchy problem x’ = f(t,x), x(0) = x₀ in Banach spaces. If f satisfies a compactness condition expressed in terms of measures of weak noncompactness, and f is Pettis-integrable, then the set of pseudo-solutions of this problem is a continuum in C w ( I , E ) , the space of all continuous functions from I to E endowed with the weak topology. Under some additional assumptions these solutions are, in fact, weak solutions or strong Carathéodory...

Convergence in Capacity

Yang Xing (2008)

Annales de l’institut Fourier

Similarity:

We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity C n of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity C n - 1 of functions in some case. As applications we give certain stability...