A note on sparse random graphs and cover graphs.
Bohmann, Tom, Frieze, Alan, Ruszinkó, Miklós, Thoma, Lubos (2000)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Bohmann, Tom, Frieze, Alan, Ruszinkó, Miklós, Thoma, Lubos (2000)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Exoo, Geoffrey (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Ingo Schiermeyer (2005)
Discussiones Mathematicae Graph Theory
Similarity:
The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.
McKay, Brendan D., Wormald, Nicholas C., Wysocka, Beata (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
K. Howalla, Abdallah N. Dabboucy, R. Tout (1982)
Časopis pro pěstování matematiky
Similarity:
Acharya, B.Devadas, Acharya, Mukti, Sinha, Deepa (2009)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Jaroslav Nešetřil (1973)
Časopis pro pěstování matematiky
Similarity: