Displaying similar documents to “Lie superalgebras graded by the root system A ( m , n ) .”

About a family of naturally graded no p-filiform Lie algebras.

L. M. Camacho, J. R. Gómez, A. J. González (2005)

Extracta Mathematicae


The knowledge of the natural graded algebras of a given class of Lie algebras offers essential information about the structure of the class. So far, the classification of naturally graded Lie algebras is only known for some families of p-filiform Lie algebras. In certain sense, if g is a naturally graded Lie algebra of dimension n, the first case of no p-filiform Lie algebras it happens when the characteristic sequence is (n-3,2,1). We present the classification of a particular family...

Formality theorems: from associators to a global formulation

Gilles Halbout (2006)

Annales mathématiques Blaise Pascal


Let M be a differential manifold. Let Φ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from Φ . More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on C ( M ) and its cohomology ( Γ ( M , Λ T M ) , [ - , - ] S ). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on G -structures, explanation...