Formality theorems: from associators to a global formulation

Gilles Halbout[1]

  • [1] Institut de Recherche Mathématique Avancée Université Louis Pasteur 7, rue René Descartes 67084 Strasbourg Cedex FRANCE

Annales mathématiques Blaise Pascal (2006)

  • Volume: 13, Issue: 2, page 313-348
  • ISSN: 1259-1734

Abstract

top
Let M be a differential manifold. Let Φ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from Φ . More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on C ( M ) and its cohomology ( Γ ( M , Λ T M ) , [ - , - ] S ). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on G -structures, explanation of the Etingof-Kazhdan quantization-dequantization theorem, of Tamarkin’s cohomological obstruction and of globalization process needed to get the formality theorem. Finally, we prove here that Tamarkin’s formality maps can be globalized.

How to cite

top

Halbout, Gilles. "Formality theorems: from associators to a global formulation." Annales mathématiques Blaise Pascal 13.2 (2006): 313-348. <http://eudml.org/doc/10533>.

@article{Halbout2006,
abstract = {Let $M$ be a differential manifold. Let $\Phi $ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from $\Phi $. More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on $C^\{\infty \}(M)$ and its cohomology $(\Gamma (M,\Lambda TM), ~[-,-]_S$). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on $G_\infty $-structures, explanation of the Etingof-Kazhdan quantization-dequantization theorem, of Tamarkin’s cohomological obstruction and of globalization process needed to get the formality theorem. Finally, we prove here that Tamarkin’s formality maps can be globalized.},
affiliation = {Institut de Recherche Mathématique Avancée Université Louis Pasteur 7, rue René Descartes 67084 Strasbourg Cedex FRANCE},
author = {Halbout, Gilles},
journal = {Annales mathématiques Blaise Pascal},
keywords = {formality theorem; deformation quantization; dequantization},
language = {eng},
month = {7},
number = {2},
pages = {313-348},
publisher = {Annales mathématiques Blaise Pascal},
title = {Formality theorems: from associators to a global formulation},
url = {http://eudml.org/doc/10533},
volume = {13},
year = {2006},
}

TY - JOUR
AU - Halbout, Gilles
TI - Formality theorems: from associators to a global formulation
JO - Annales mathématiques Blaise Pascal
DA - 2006/7//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 2
SP - 313
EP - 348
AB - Let $M$ be a differential manifold. Let $\Phi $ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from $\Phi $. More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on $C^{\infty }(M)$ and its cohomology $(\Gamma (M,\Lambda TM), ~[-,-]_S$). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on $G_\infty $-structures, explanation of the Etingof-Kazhdan quantization-dequantization theorem, of Tamarkin’s cohomological obstruction and of globalization process needed to get the formality theorem. Finally, we prove here that Tamarkin’s formality maps can be globalized.
LA - eng
KW - formality theorem; deformation quantization; dequantization
UR - http://eudml.org/doc/10533
ER -

References

top
  1. J. H. Bauesi, The double bar and cobar constructions, Compos. Math 43 (1981), 331-341 Zbl0478.57027MR632433
  2. V. Dolgushev, Covariant and equivariant formality theorems, Adv. Math. 191 (2005), 147-177 Zbl1116.53065MR2102846
  3. V. G. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419-1457 Zbl0718.16033MR1047964
  4. V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) (1993), 798-820, Amer. Math. Soc., Providence, RI MR934283
  5. B. Enriquez, A cohomological construction of quantization functors of Lie bialgebras, Adv. Math. 197 (2005), 430-479 Zbl1127.17013MR2173841
  6. P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), 1-41 Zbl0863.17008MR1403351
  7. P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. II, III, Selecta Math. (N.S.) 4 (1998), 213-231, 233-269 Zbl0915.17009MR1669953
  8. B. Fedosov, A simple geometrical construction of deformation quantization, J. Diff. Geom. 40 (1994), 213-238 Zbl0812.53034MR1293654
  9. M. Gerstenhaber, A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices 3 (1995), 141-153 Zbl0827.18004MR1321701
  10. G. Ginot, Homologie et modèle minimal des algèbres de Gerstenhaber, Ann. Math. Blaise Pascal 11 (2004), 95-127 Zbl1139.16301MR2077240
  11. G. Ginot, G. Halbout, A formality theorem for Poisson manifold, Lett. Math. Phys. 66 (2003), 37-64 Zbl1066.53145MR2064591
  12. V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), 203-272 Zbl0855.18006MR1301191
  13. G. Halbout, Formule d’homotopie entre les complexes de Hochschild et de de Rham, Compositio Math. 126 (2001), 123-145 Zbl1007.16008MR1827641
  14. V. Hinich, Tamarkin’s proof of Kontsevich’s formality theorem, Forum Math. 15 (2003), 591-614 Zbl1081.16014MR1978336
  15. G. Hochschild, B. Kostant, A. Rosenberg, Differential forms on regular affine algebras, Transactions AMS 102 (1962), 383-408 Zbl0102.27701MR142598
  16. C. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math. 408 (1990), 159-180 Zbl0691.18002MR1058987
  17. M. Khalkhali, Operations on cyclic homology, the X complex, and a conjecture of Deligne, Comm. Math. Phys. 202 (1999), 309-323 Zbl0952.16008MR1689975
  18. M. Kontsevich, Formality conjecture. Deformation theory and symplectic geometry, Math. Phys. Stud. 20 (1996), 139-156 Zbl1149.53325MR1480721
  19. M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
  20. M. Kontsevich, Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, (2000), 255-307 Zbl0972.18005MR1805894
  21. P. B. A. Lecomte, M. De Wilde, A homotopy formula for the Hochschild cohomology, Compositio Math. 96 (1995), 99-109 Zbl0842.16006MR1323727
  22. D. Tamarkin, Another proof of M. Kontsevich’s formality theorem, (1998) 
  23. A. Voronov, Homotopy Gerstenhaber algebras, Conférence Moshé Flato 1999, Vol. II (Dijon) (2000), 307-331, Publ.Kluwer Acad.K. A. Zbl0974.16005MR1805923

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.