Formality theorems: from associators to a global formulation
- [1] Institut de Recherche Mathématique Avancée Université Louis Pasteur 7, rue René Descartes 67084 Strasbourg Cedex FRANCE
Annales mathématiques Blaise Pascal (2006)
- Volume: 13, Issue: 2, page 313-348
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topHalbout, Gilles. "Formality theorems: from associators to a global formulation." Annales mathématiques Blaise Pascal 13.2 (2006): 313-348. <http://eudml.org/doc/10533>.
@article{Halbout2006,
abstract = {Let $M$ be a differential manifold. Let $\Phi $ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from $\Phi $. More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on $C^\{\infty \}(M)$ and its cohomology $(\Gamma (M,\Lambda TM), ~[-,-]_S$). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on $G_\infty $-structures, explanation of the Etingof-Kazhdan quantization-dequantization theorem, of Tamarkin’s cohomological obstruction and of globalization process needed to get the formality theorem. Finally, we prove here that Tamarkin’s formality maps can be globalized.},
affiliation = {Institut de Recherche Mathématique Avancée Université Louis Pasteur 7, rue René Descartes 67084 Strasbourg Cedex FRANCE},
author = {Halbout, Gilles},
journal = {Annales mathématiques Blaise Pascal},
keywords = {formality theorem; deformation quantization; dequantization},
language = {eng},
month = {7},
number = {2},
pages = {313-348},
publisher = {Annales mathématiques Blaise Pascal},
title = {Formality theorems: from associators to a global formulation},
url = {http://eudml.org/doc/10533},
volume = {13},
year = {2006},
}
TY - JOUR
AU - Halbout, Gilles
TI - Formality theorems: from associators to a global formulation
JO - Annales mathématiques Blaise Pascal
DA - 2006/7//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 2
SP - 313
EP - 348
AB - Let $M$ be a differential manifold. Let $\Phi $ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from $\Phi $. More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on $C^{\infty }(M)$ and its cohomology $(\Gamma (M,\Lambda TM), ~[-,-]_S$). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on $G_\infty $-structures, explanation of the Etingof-Kazhdan quantization-dequantization theorem, of Tamarkin’s cohomological obstruction and of globalization process needed to get the formality theorem. Finally, we prove here that Tamarkin’s formality maps can be globalized.
LA - eng
KW - formality theorem; deformation quantization; dequantization
UR - http://eudml.org/doc/10533
ER -
References
top- J. H. Bauesi, The double bar and cobar constructions, Compos. Math 43 (1981), 331-341 Zbl0478.57027MR632433
- V. Dolgushev, Covariant and equivariant formality theorems, Adv. Math. 191 (2005), 147-177 Zbl1116.53065MR2102846
- V. G. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419-1457 Zbl0718.16033MR1047964
- V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) (1993), 798-820, Amer. Math. Soc., Providence, RI MR934283
- B. Enriquez, A cohomological construction of quantization functors of Lie bialgebras, Adv. Math. 197 (2005), 430-479 Zbl1127.17013MR2173841
- P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), 1-41 Zbl0863.17008MR1403351
- P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. II, III, Selecta Math. (N.S.) 4 (1998), 213-231, 233-269 Zbl0915.17009MR1669953
- B. Fedosov, A simple geometrical construction of deformation quantization, J. Diff. Geom. 40 (1994), 213-238 Zbl0812.53034MR1293654
- M. Gerstenhaber, A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices 3 (1995), 141-153 Zbl0827.18004MR1321701
- G. Ginot, Homologie et modèle minimal des algèbres de Gerstenhaber, Ann. Math. Blaise Pascal 11 (2004), 95-127 Zbl1139.16301MR2077240
- G. Ginot, G. Halbout, A formality theorem for Poisson manifold, Lett. Math. Phys. 66 (2003), 37-64 Zbl1066.53145MR2064591
- V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), 203-272 Zbl0855.18006MR1301191
- G. Halbout, Formule d’homotopie entre les complexes de Hochschild et de de Rham, Compositio Math. 126 (2001), 123-145 Zbl1007.16008MR1827641
- V. Hinich, Tamarkin’s proof of Kontsevich’s formality theorem, Forum Math. 15 (2003), 591-614 Zbl1081.16014MR1978336
- G. Hochschild, B. Kostant, A. Rosenberg, Differential forms on regular affine algebras, Transactions AMS 102 (1962), 383-408 Zbl0102.27701MR142598
- C. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math. 408 (1990), 159-180 Zbl0691.18002MR1058987
- M. Khalkhali, Operations on cyclic homology, the X complex, and a conjecture of Deligne, Comm. Math. Phys. 202 (1999), 309-323 Zbl0952.16008MR1689975
- M. Kontsevich, Formality conjecture. Deformation theory and symplectic geometry, Math. Phys. Stud. 20 (1996), 139-156 Zbl1149.53325MR1480721
- M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
- M. Kontsevich, Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, (2000), 255-307 Zbl0972.18005MR1805894
- P. B. A. Lecomte, M. De Wilde, A homotopy formula for the Hochschild cohomology, Compositio Math. 96 (1995), 99-109 Zbl0842.16006MR1323727
- D. Tamarkin, Another proof of M. Kontsevich’s formality theorem, (1998)
- A. Voronov, Homotopy Gerstenhaber algebras, Conférence Moshé Flato 1999, Vol. II (Dijon) (2000), 307-331, Publ.Kluwer Acad.K. A. Zbl0974.16005MR1805923
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.