Displaying similar documents to “On the symmetry classes of the first covariant derivatives of tensor fields.”

Twisted action of the symmetric group on the cohomology of a flag manifold

Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1996)

Banach Center Publications


Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form,...

On z◦ -ideals in C(X)

F. Azarpanah, O. Karamzadeh, A. Rezai Aliabad (1999)

Fundamenta Mathematicae


An ideal I in a commutative ring R is called a z°-ideal if I consists of zero divisors and for each a ∈ I the intersection of all minimal prime ideals containing a is contained in I. We characterize topological spaces X for which z-ideals and z°-ideals coincide in , or equivalently, the sum of any two ideals consisting entirely of zero divisors consists entirely of zero divisors. Basically disconnected spaces, extremally disconnected and P-spaces are characterized in terms of z°-ideals....