The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Topological transitivity and strong transitivity.”

The Riemann theorem and divergent permutations

Roman Wituła (1996)

Colloquium Mathematicae

Similarity:

In this paper the fundamental algebraic propeties of convergent and divergent permutations of ℕ are presented. A permutation p of ℕ is said to be divergent if at least one conditionally convergent series a n of real terms is rearranged by p to a divergent series a p ( n ) . All other permutations of ℕ are called convergent. Some generalizations of the Riemann theorem about the set of limit points of the partial sums of rearrangements of a given conditionally convergent series are also studied. ...

A descriptive, additive modification of Mawhin's integral and the Divergence Theorem with singularities

Dirk Jens F. Nonnenmacher (1994)

Annales Polonici Mathematici

Similarity:

Modifying Mawhin's definition of the GP-integral we define a well-behaved integral over n-dimensional compact intervals. While its starting definition is of Riemann type, we also establish an equivalent descriptive definition involving characteristic null conditions. This characterization is then used to obtain a quite general form of the divergence theorem.

Commuting functions and simultaneous Abel equations

W. Jarczyk, K. Łoskot, M. C. Zdun (1994)

Annales Polonici Mathematici

Similarity:

The system of Abel equations α(ft(x)) = α(x) + λ(t), t ∈ T, is studied under the general assumption that f t are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.

Tietze Extension Theorem for n-dimensional Spaces

Karol Pąk (2014)

Formalized Mathematics

Similarity:

In this article we prove the Tietze extension theorem for an arbitrary convex compact subset of εn with a non-empty interior. This theorem states that, if T is a normal topological space, X is a closed subset of T, and A is a convex compact subset of εn with a non-empty interior, then a continuous function f : X → A can be extended to a continuous function g : T → εn. Additionally we show that a subset A is replaceable by an arbitrary subset of a topological space that is homeomorphic...