Random dynamics and its applications.
Kifer, Yuri (1998)
Documenta Mathematica
Similarity:
Kifer, Yuri (1998)
Documenta Mathematica
Similarity:
R. Kaufman (1970)
Studia Mathematica
Similarity:
Zachary, Stan, Foss, S.G. (2006)
Sibirskij Matematicheskij Zhurnal
Similarity:
Nguyen, Quy Hy, Nguyen, Ngoc Cuong (2015-12-08T12:59:38Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
G. Trybuś (1974)
Applicationes Mathematicae
Similarity:
Mustafa, Ghulam, Nosh, Nusrat Anjum, Rashid, Abdur (2005)
Lobachevskii Journal of Mathematics
Similarity:
Zhu, Chuanxi, Xu, Zongben (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
D. Banjevic, Z. Ivkovic (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
W. Dziubdziela (1976)
Applicationes Mathematicae
Similarity:
F. den Hollander, R. S. dos Santos (2014)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the...
Agnieszka Jurlewicz
Similarity:
I. Kopocińska, B. Kopociński (1987)
Applicationes Mathematicae
Similarity:
N. Zygouras (2013)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.
I. Deák (1980)
Applicationes Mathematicae
Similarity: