Scaling of a random walk on a supercritical contact process
F. den Hollander; R. S. dos Santos
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1276-1300
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Avena. Random walks in dynamic random environments. Ph.D. thesis, Leiden Univ., 2010. Zbl1246.82040
- [2] L. Avena. Symmetric exclusion as a model of non-elliptic dynamical random conductances. Electron. Commun. Probab. 17 (2012). Zbl1252.60097MR2988390
- [3] L. Avena, F. den Hollander and F. Redig. Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion. Markov Process. Related Fields16 (2010) 139–168. Zbl1198.82049MR2664339
- [4] L. Avena, F. den Hollander and F. Redig. Law of large numbers for a class of random walks in dynamic random environments. Electron J. Probab.16 (2011) 587–617. Zbl1228.60113MR2786643
- [5] L. Avena, R. dos Santos and F. Völlering. Transient random walk in symmetric exclusion: Limit theorems and an Einstein relation. Available at arXiv:1102.1075 [math.PR]. Zbl1277.60185
- [6] C. Bezuidenhout and G. Grimmett. Exponential decay for subcritical contact and percolation processes. Ann. Probab.19 (1991) 984–1009. Zbl0743.60107MR1112404
- [7] M. Birkner, J. Černý, A. Depperschmidt and N. Gantert. Directed random walk on an oriented percolation cluster. Available at arXiv:1204.2951 [math.PR]. Zbl1326.60142
- [8] F. den Hollander, H. Kesten and V. Sidoravicius. Directed random walk on the backbone of an oriented percolation cluster. Available at arXiv:1305.0923 [math.PR].
- [9] R. Durrett and R. H. Schonmann. Large deviations for the contact process and two-dimensional percolation. Probab. Theory Related Fields77 (1988) 583–603. Zbl0621.60108MR933991
- [10] P. Glynn and W. Whitt. Large deviations behavior of counting processes and their inverses. Queueing Syst.17 (1994) 107–128. Zbl0805.60023MR1295409
- [11] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. Zbl0559.60078MR776231
- [12] T. M. Liggett. An improved subadditive ergodic theorem. Ann. Probab.13 (1985) 1279–1285. Zbl0579.60023MR806224
- [13] T. M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften 324. Springer, Berlin, 1999. Zbl0949.60006MR1717346
- [14] T. M. Liggett and J. Steif. Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 223–243. Zbl1087.60074MR2199800
- [15] A.-S. Sznitman. Lectures on random motions in random media. In Ten Lectures on Random Media 1851–1869. DMV-Lectures 32. Birkhäuser, Basel, 2002. MR1890289
- [16] J. van den Berg, O. Häggström and J. Kahn. Some conditional correlation inequalities for percolation and related processes. Random Structures Algorithms29 (2006) 417–435. Zbl1112.60087MR2268229
- [17] O. Zeitouni. Random walks in random environment. In XXXI Summer School in Probability, Saint-Flour, 2001193–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631