Displaying similar documents to “The Riemann surface of a uniform dessin.”

On ovals on Riemann surfaces.

Grzegorz Gromadzki (2000)

Revista Matemática Iberoamericana

Similarity:

We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

Automorphisms of Riemann surfaces with two fixed points

Tomasz Szemberg (1991)

Annales Polonici Mathematici

Similarity:

We give an upper bound for the order of an automorphism of a Riemann surface with two fixed points. The main results are presented in Theorems 1.4 and 2.4.

Riemann and Klein surfaces with nodes viewed as quotients.

Ignacio C. Garijo (2006)

Revista Matemática Complutense

Similarity:

If G is a group of automorphisms that acts properly discontinuously on a Riemann or Klein surface X, then there exists a unique structure of Riemann or Klein surface on X/G such that the projection π: X → X/G is a morphism. The analogous result is not true when we deal with surfaces with nodes. In this paper we give a new definition of a group that acts properly discontinuously on a surface with nodes in order to obtain a similar theorem.

On the family of cyclic trigonal Riemann surfaces of genus 4 with several trigonal morphisms.

Antonio F. Costa, Milagros Izquierdo, Daniel Ying (2007)

RACSAM

Similarity:

A closed Riemann surface which is a 3-sheeted regular covering of the Riemann sphere is called cyclic trigonal, and such a covering is called a cyclic trigonal morphism. Accola showed that if the genus is greater or equal than 5 the trigonal morphism is unique. Costa-Izquierdo-Ying found a family of cyclic trigonal Riemann surfaces of genus 4 with two trigonal morphisms. In this work we show that this family is the Riemann sphere without three points. We also prove that the Hurwitz space...

On two recent geometrical characterizations of hyperellipticity.

Antonio F. Costa, Ana M. Porto (2004)

Revista Matemática Complutense

Similarity:

We obtain short and unified new proofs of two recent characterizations of hyperellipticity given by Maskit (2000) and Schaller (2000), as well as a way of establishing a relation between them.