Ozsváth-Szabó invariants and tight contact three-manifolds; I.
Lisca, Paolo, Stipsicz, András I. (2004)
Geometry & Topology
Similarity:
Lisca, Paolo, Stipsicz, András I. (2004)
Geometry & Topology
Similarity:
Lisca, Paolo, Stipsicz, Andras I. (2003)
Geometry & Topology
Similarity:
Florens, Vincent, Gilmer, Patrick M. (2003)
Algebraic & Geometric Topology
Similarity:
Hansen, Søren Kold (2001)
Algebraic & Geometric Topology
Similarity:
Ue, Masaaki (2001)
Algebraic & Geometric Topology
Similarity:
Ding, Fan, Geiges, Hansjörg (2001)
Algebraic & Geometric Topology
Similarity:
Garoufalidis, Stavros, Goussarov, Mikhail, Polyak, Michael (2001)
Geometry & Topology
Similarity:
Garoufalidis, Stavros, Levine, Jerome (2001)
Geometry & Topology
Similarity:
Kronheimer, P.B., Mrowka, T.S. (2004)
Geometry & Topology
Similarity:
Ghiggini, Paolo (2005)
Geometry & Topology
Similarity:
Clark, Bradd (1980)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Yuya Koda (2012)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin structures. Here, a Spin structure of a 3-manifold is a homology class of non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin structure, which is represented as a non-singular vector field the set of whose orbits give a Seifert fibration. We provide an algorithm for computing the Reidemeister-Turaev torsion of the standard Spin structure on a Seifert fibered 3-manifold....