Normal families, multiplicity and the branch set of quasiregular maps.
Martio, O., Srebro, U., Väisälä, J. (1999)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Martio, O., Srebro, U., Väisälä, J. (1999)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Martio, O., Ryazanov, V., Srebo, U., Yakubov, E. (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Hästö, Peter A. (2003)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Buckley, Stephen M. (2004)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Harjulehto, Petteri (2002)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Nieminen, Tomi (2006)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Koskela, P., Rogovin, S. (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Hakobyan, Hrant, Herron, David A. (2008)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Holopainen, Ilkka, Pankka, Pekka (2004)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Shanmugalingam, Nageswari (2004)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Cristea, M. (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Robert Kaufman, Jeremy T. Tyson, Jang-Mei Wu (2005)
Publications Mathématiques de l'IHÉS
Similarity:
According to a theorem of Martio, Rickman and Väisälä, all nonconstant C-smooth quasiregular maps in , ≥3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in . We prove that the order of smoothness is sharp in . For each ≥5 we construct a C-smooth quasiregular map in with nonempty branch set.
Stephen M. Buckley, Alexander Stanoyevitch (2001)
Revista Matemática Iberoamericana
Similarity:
We investigate geometric conditions related to Hölder imbeddings, and show, among other things, that the only bounded Euclidean domains of the form U x V that are quasiconformally equivalent to inner uniform domains are inner uniform domains.