### The Seiberg-Witten invariants and 4-manifolds with essential tori.

Taubes, Clifford Henry (2001)

Geometry & Topology

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Taubes, Clifford Henry (2001)

Geometry & Topology

Similarity:

Boden, Hans U., Herald, Christopher M., Kirk, Paul A., Klassen, Eric P. (2001)

Geometry & Topology

Similarity:

Kirk, Paul, Lesch, Matthias (2003)

Algebraic & Geometric Topology

Similarity:

Roberts, Justin (1999)

Geometry & Topology

Similarity:

Manolescu, Ciprian (2003)

Geometry & Topology

Similarity:

Ruberman, Daniel (2001)

Geometry & Topology

Similarity:

Taubes, Clifford Henry (2002)

Geometry & Topology

Similarity:

Ruberman, Daniel, Saveliev, Nikolai (2005)

Geometry & Topology

Similarity:

Himpel, Benjamin (2005)

Geometry & Topology

Similarity:

Keswani, Navin (1999)

The New York Journal of Mathematics [electronic only]

Similarity:

Brussee, Rogier (1996)

The New York Journal of Mathematics [electronic only]

Similarity:

Lisca, Paolo, Stipsicz, Andras I. (2003)

Geometry & Topology

Similarity:

Luca Scala (2011)

Annales de l’institut Fourier

Similarity:

Let $M$ a compact connected oriented 4-manifold. We study the space $\Xi $ of ${\mathrm{Spin}}^{\mathrm{c}}$-structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on $M$. In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all ${\mathrm{Spin}}^{\mathrm{c}}$-structures $\Xi $. We prove that, on a complex Kähler surface, for an hermitian metric $h$ sufficiently close to the original Kähler metric, the...