Perturbations of the metric in Seiberg-Witten equations
Luca Scala[1]
- [1] University of Chicago Department of Mathematics 5734 S. University Avenue 60637 Chicago IL (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 3, page 1259-1297
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topScala, Luca. "Perturbations of the metric in Seiberg-Witten equations." Annales de l’institut Fourier 61.3 (2011): 1259-1297. <http://eudml.org/doc/219754>.
@article{Scala2011,
abstract = {Let $M$ a compact connected oriented 4-manifold. We study the space $\Xi $ of $\rm \{Spin\}^c$-structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on $M$. In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all $\rm \{Spin\}^c$-structures $\Xi $. We prove that, on a complex Kähler surface, for an hermitian metric $h$ sufficiently close to the original Kähler metric, the moduli space of Seiberg-Witten monopoles relative to the metric $h$ is smooth of the expected dimension.},
affiliation = {University of Chicago Department of Mathematics 5734 S. University Avenue 60637 Chicago IL (USA)},
author = {Scala, Luca},
journal = {Annales de l’institut Fourier},
keywords = {Seiberg-Witten theory; perturbations of the metric; Kähler surfaces; transversality},
language = {eng},
number = {3},
pages = {1259-1297},
publisher = {Association des Annales de l’institut Fourier},
title = {Perturbations of the metric in Seiberg-Witten equations},
url = {http://eudml.org/doc/219754},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Scala, Luca
TI - Perturbations of the metric in Seiberg-Witten equations
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 1259
EP - 1297
AB - Let $M$ a compact connected oriented 4-manifold. We study the space $\Xi $ of $\rm {Spin}^c$-structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on $M$. In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all $\rm {Spin}^c$-structures $\Xi $. We prove that, on a complex Kähler surface, for an hermitian metric $h$ sufficiently close to the original Kähler metric, the moduli space of Seiberg-Witten monopoles relative to the metric $h$ is smooth of the expected dimension.
LA - eng
KW - Seiberg-Witten theory; perturbations of the metric; Kähler surfaces; transversality
UR - http://eudml.org/doc/219754
ER -
References
top- Daniel Bennequin, Monopôles de Seiberg-Witten et conjecture de Thom (d’après Kronheimer, Mrowka et Witten), Astérisque (1997), Exp. No. 807, 3, 59-96 Zbl0881.57035MR1472535
- Arthur L. Besse, Einstein manifolds, 10 (1987), Springer-Verlag, Berlin Zbl1147.53001MR867684
- Jean-Pierre Bourguignon, Paul Gauduchon, Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math. Phys. 144 (1992), 581-599 Zbl0755.53009MR1158762
- S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, (1990), The Clarendon Press Oxford University Press, New York Zbl0820.57002MR1079726
- Jürgen Eichhorn, Thomas Friedrich, Seiberg-Witten theory, Symplectic singularities and geometry of gauge fields (Warsaw, 1995) 39 (1997), 231-267, Polish Acad. Sci., Warsaw Zbl0881.57032MR1458664
- Daniel S. Freed, David Groisser, The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Michigan Math. J. 36 (1989), 323-344 Zbl0694.58008MR1027070
- Daniel S. Freed, Karen K. Uhlenbeck, Instantons and four-manifolds, 1 (1991), Springer-Verlag, New York Zbl0559.57001MR1081321
- Thomas Friedrich, Dirac operators in Riemannian geometry, 25 (2000), American Mathematical Society, Providence, RI Zbl0949.58032MR1777332
- Olga Gil-Medrano, Peter W. Michor, The Riemannian manifold of all Riemannian metrics, Quart. J. Math. Oxford Ser. (2) 42 (1991), 183-202 Zbl0739.58010MR1107281
- Shoshichi Kobayashi, Katsumi Nomizu, Foundations of differential geometry. Vol. I, (1996), John Wiley & Sons Inc., New York Zbl0091.34802MR1393940
- Andreas Kriegl, Peter W. Michor, The convenient setting of global analysis, 53 (1997), American Mathematical Society, Providence, RI Zbl0889.58001MR1471480
- H. Blaine Lawson, Marie-Louise Michelsohn, Spin geometry, 38 (1989), Princeton University Press, Princeton, NJ Zbl0688.57001MR1031992
- Stephan Maier, Generic metrics and connections on Spin- and Spin-manifolds, Comm. Math. Phys. 188 (1997), 407-437 Zbl0899.53036MR1471821
- John W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, 44 (1996), Princeton University Press, Princeton, NJ Zbl0846.57001MR1367507
- Christian Okonek, Andrei Teleman, Seiberg-Witten invariants for manifolds with , and the universal wall crossing formula, Internat. J. Math. 7 (1996), 811-832 Zbl0959.57029MR1417787
- Alexandru Scorpan, The wild world of 4-manifolds, (2005), American Mathematical Society, Providence, RI Zbl1075.57001MR2136212
- N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in supersymmetric Yang-Mills theory, Nuclear Phys. B 426 (1994), 19-52 Zbl0996.81510MR1293681
- N. Seiberg, E. Witten, Monopoles, duality and chiral symmetry breaking in supersymmetric QCD, Nuclear Phys. B 431 (1994), 484-550 Zbl1020.81911MR1306869
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861-866 Zbl0143.35301MR185604
- Andrei Teleman, Introduction à la théorie de Jauge, (2005)
- E. Witten, Monopoles and four manifolds, Math. Res. Lett. 3 (1994), 654-675 Zbl0867.57029MR1306021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.