The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Subalgebras of graph C * -algebras.”

Hyperidentities in associative graph algebras

Tiang Poomsa-ard (2000)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the correspondinggraph algebra A(G) satisfies s ≈ t. A graph G is called associative if the corresponding graph algebra A(G) satisfies the equation (xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ is called a hyperidentity of an algebra A̲ if whenever the operation symbols occurring in s...

Travel groupoids on infinite graphs

Jung Rae Cho, Jeongmi Park, Yoshio Sano (2014)

Czechoslovak Mathematical Journal

Similarity:

The notion of travel groupoids was introduced by L. Nebeský in 2006 in connection with a study on geodetic graphs. A travel groupoid is a pair of a set V and a binary operation * on V satisfying two axioms. We can associate a graph with a travel groupoid. We say that a graph G has a travel groupoid if the graph associated with the travel groupoid is equal to G . Nebeský gave a characterization of finite graphs having a travel groupoid. In this paper, we study travel groupoids on infinite...

Travel groupoids

Ladislav Nebeský (2006)

Czechoslovak Mathematical Journal

Similarity:

In this paper, by a travel groupoid is meant an ordered pair ( V , * ) such that V is a nonempty set and * is a binary operation on V satisfying the following two conditions for all u , v V : ( u * v ) * u = u ; if ( u * v ) * v = u , then u = v . Let ( V , * ) be a travel groupoid. It is easy to show that if x , y V , then x * y = y if and only if y * x = x . We say that ( V , * ) is on a (finite or infinite) graph G if V ( G ) = V and E ( G ) = { { u , v } u , v V and u u * v = v } . Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.