The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some plethysm results related to Foulkes' conjecture.”

Bottom Schur functions.

Clifford, Peter, Stanley, Richard P. (2004)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Trace and determinant in Banach algebras

Bernard Aupetit, H. Mouton (1996)

Studia Mathematica

Similarity:

We show that the trace and the determinant on a semisimple Banach algebra can be defined in a purely spectral and analytic way and then we obtain many consequences from these new definitions.

A new rank formula for idempotent matrices with applications

Yong Ge Tian, George P. H. Styan (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that rank ( P * A Q ) = rank ( P * A ) + rank ( A Q ) - rank ( A ) , where A is idempotent, [ P , Q ] has full row rank and P * Q = 0 . Some applications of the rank formula to generalized inverses of matrices are also presented.

Zero-term rank preservers of integer matrices

Seok-Zun Song, Young-Bae Jun (2006)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.