Trace and determinant in Banach algebras

Bernard Aupetit; H. Mouton

Studia Mathematica (1996)

  • Volume: 121, Issue: 2, page 115-136
  • ISSN: 0039-3223

Abstract

top
We show that the trace and the determinant on a semisimple Banach algebra can be defined in a purely spectral and analytic way and then we obtain many consequences from these new definitions.

How to cite

top

Aupetit, Bernard, and Mouton, H.. "Trace and determinant in Banach algebras." Studia Mathematica 121.2 (1996): 115-136. <http://eudml.org/doc/216346>.

@article{Aupetit1996,
abstract = {We show that the trace and the determinant on a semisimple Banach algebra can be defined in a purely spectral and analytic way and then we obtain many consequences from these new definitions.},
author = {Aupetit, Bernard, Mouton, H.},
journal = {Studia Mathematica},
keywords = {trace; determinant; semisimple Banach algebra},
language = {eng},
number = {2},
pages = {115-136},
title = {Trace and determinant in Banach algebras},
url = {http://eudml.org/doc/216346},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Aupetit, Bernard
AU - Mouton, H.
TI - Trace and determinant in Banach algebras
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 2
SP - 115
EP - 136
AB - We show that the trace and the determinant on a semisimple Banach algebra can be defined in a purely spectral and analytic way and then we obtain many consequences from these new definitions.
LA - eng
KW - trace; determinant; semisimple Banach algebra
UR - http://eudml.org/doc/216346
ER -

References

top
  1. [1] J. C. Alexander, Compact Banach algebras, Proc. London Math. Soc. (3) 18 (1968), 1-18. Zbl0184.16502
  2. [2] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979. Zbl0409.46054
  3. [3] B. Aupetit, A Primer on Spectral Theory, Universitext, Springer, New York, 1991. 
  4. [4] B. Aupetit, Spectral characterization of the socle in Jordan-Banach algebras, Math. Proc. Cambridge Philos. Soc. 117 (1995), 479-489. Zbl0837.46040
  5. [5] B. Aupetit, A geometric characterization of algebraic varieties of 2 , Proc. Amer. Math. Soc. 123 (1995), 3323-3327. Zbl0853.32014
  6. [6] B. Aupetit, Trace and spectrum preserving linear mappings in Jordan-Banach algebras, Monatsh. Math., to appear. 
  7. [7] B. Aupetit and H. du T. Mouton, Spectrum preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100. Zbl0829.46039
  8. [8] B. Aupetit, A. Maouche and H. du T. Mouton, Trace and determinant in Jordan-Banach algebras, preprint. Zbl1013.46040
  9. [9] B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West, Riesz and Fredholm Theory in Banach Algebras, Res. Notes in Math. 67, Pitman, Boston, 1982. Zbl0534.46034
  10. [10] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb. 80, Springer, Berlin, 1973. 
  11. [11] J. Dieudonné, History of Functional Analysis, Notas Mat. 49, North-Holland, Amsterdam, 1981. Zbl0478.46001
  12. [12] R. A. Hirschfeld and B. E. Johnson, Spectral characterization of finite-dimensional algebras, Indag. Math. 34 (1972), 19-23. Zbl0232.46043
  13. [13] H. Kraljević and K. Veselić, On algebraic and spectrally finite Banach algebras, Glasnik Mat. 11 (1976), 291-318. Zbl0354.46031
  14. [14] (H. du) T. Mouton and R. Raubenheimer, On rank one and finite elements of Banach algebras, Studia Math. 104 (1993), 211-219. Zbl0814.46035
  15. [15] A. Pietsch, Eigenvalues and s-Numbers, Cambridge Stud. Adv. Math. 13, Cambridge University Press, Cambridge, 1987. 
  16. [16] J. Puhl, The trace of finite and nuclear elements in Banach algebras, Czechoslovak Math. J. 28 (103) (1978), 656-676. Zbl0394.46041
  17. [17] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974. Zbl0278.26001
  18. [18] Y. Sun, A remark on the trace of some Riesz operators, Arch. Math. (Basel) 63 (1994), 530-534. Zbl0817.47023
  19. [19] M. Trémon, Polynômes de degré minimum connectant deux projections dans une algèbre de Banach, Linear Algebra Appl. 64 (1985), 115-132. Zbl0617.46054
  20. [20] H. K. Wimmer, Spectral radius and radius of convergence, Amer. Math. Monthly 81 (1974), 625-627. Zbl0291.15021
  21. [21] J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183. Zbl0429.46029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.