### Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes.

Duval, Art M. (1996)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Duval, Art M. (1996)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Mark Johnson, Bernd Ulrich (1996)

Compositio Mathematica

Similarity:

Olga Lavila-Vidal, Santiago Zarzuela (1998)

Collectanea Mathematica

Similarity:

Alexander MacAulay

Similarity:

Santiago Zarzuela (1992)

Publicacions Matemàtiques

Similarity:

In this note we give a description of a morphism related to the structure of the canonical model of the Rees algebra R(I) of an ideal I in a local ring. As an application we obtain Ikeda's criteria for the Gorensteinness of R(I) and a result of Herzog-Simis-Vasconcelos characterizing when the canonical module of R(I) has the expected form.

Judith D. Sally (1980)

Compositio Mathematica

Similarity:

Nagel, U., Migliore, J.C. (2001)

Rendiconti del Seminario Matematico

Similarity:

Berglund, Alexander (2009)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Edgar E. Enochs, Jenda M. G. Overtoun (1994)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we use a characterization of $R$-modules $N$ such that $f{d}_{R}N=p{d}_{R}N$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.