Generalized Brown representability in homotopy categories.
Rosický, Jiří (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Rosický, Jiří (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Dundas, Bjørn Ian (2001)
Theory and Applications of Categories [electronic only]
Similarity:
M. A. Batanin (1993)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Extremiana Aldana, J.Ignazio, Hernández Paricio, L.Javier, Rivas Rodríguez, M.Teresa (1997)
Theory and Applications of Categories [electronic only]
Similarity:
Marek Golasiński (1981)
Fundamenta Mathematicae
Similarity:
Pirashvili, Teimuraz (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Mandell, Michael A. (2010)
Documenta Mathematica
Similarity:
Fiedorowicz, Vogt (2003)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Fritsch, Rudolf, Golasiński, Marek (1998)
Theory and Applications of Categories [electronic only]
Similarity:
Marta Bunge, Robert Pare (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. García-Calcines, P. García-Díaz, S. Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Taking cylinder objects, as defined in a model category, we consider a cylinder construction in a cofibration category, which provides a reformulation of relative homotopy in the sense of Baues. Although this cylinder is not a functor we show that it verifies a list of properties which are very closed to those of an I-category (or category with a natural cylinder functor). Considering these new properties, we also give an alternative description of Baues’ relative homotopy groupoids. ...