The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The HELP inequality for Hamiltonian systems.”

A simple proof of the non-integrability of the first and the second Painlevé equations

Henryk Żołądek (2011)

Banach Center Publications

Similarity:

The first and the second Painlevé equations are explicitly Hamiltonian with time dependent Hamilton function. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems in ℂ⁴. We prove that the latter systems do not have any additional algebraic first integral. In the proof equations in variations with respect to a parameter are used.

Andrew Lenard: a mystery unraveled.

Praught, Jeffery, Smirnov, Roman G. (2005)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Improved Sufficient Conditions for Hamiltonian Properties

Jens-P. Bode, Anika Fricke, Arnfried Kemnitz (2015)

Discussiones Mathematicae Graph Theory

Similarity:

In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity...

Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval

Roman Šimon Hilscher, Petr Zemánek (2010)

Mathematica Bohemica

Similarity:

In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.