A radical between Jacobson and Brown-McCoy radicals
Manley, P.L. (1981)
Portugaliae mathematica
Similarity:
Manley, P.L. (1981)
Portugaliae mathematica
Similarity:
D. Laksov, M. Rosenlund (2005)
Fundamenta Mathematicae
Similarity:
Various kinds of radicals of ideals in commutative rings with identity appear in many parts of algebra and geometry, in particular in connection with the Hilbert Nullstellensatz, both in the noetherian and the non-noetherian case. All of these radicals, except the *-radicals, have the fundamental, and very useful, property that the radical of an ideal is the intersection of radical primes, that is, primes that are equal to their own radical. It is easy to verify that...
A. Suliński (1966)
Fundamenta Mathematicae
Similarity:
R.R. Laxton (1964)
Mathematische Zeitschrift
Similarity:
Luh, Jiang (1960)
Portugaliae mathematica
Similarity:
Manley, P.L. (1979)
Portugaliae mathematica
Similarity:
I. N. Herstein, Louis H. Rowen (1978)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Konstantin Igorevich Beidar, Katarina Trokanová-Salavová (1989)
Czechoslovak Mathematical Journal
Similarity:
de la Rosa, B., van Niekerk, J.S., Wiegandt, R. (1992)
Mathematica Pannonica
Similarity:
Rao, Ravi Srinivasa, Prasad, K.Siva, Srinivas, T. (2008)
International Journal of Mathematics and Mathematical Sciences
Similarity: