T-homotopy and refinement of observation. IV. Invariance of the underlying homotopy type.
Gaucher, Philippe (2006)
The New York Journal of Mathematics [electronic only]
Similarity:
Gaucher, Philippe (2006)
The New York Journal of Mathematics [electronic only]
Similarity:
Gaucher, Philippe (2008)
The New York Journal of Mathematics [electronic only]
Similarity:
Gaucher, Philippe (2005)
The New York Journal of Mathematics [electronic only]
Similarity:
Gaucher, Philippe (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Gaucher, Philippe (2006)
Theory and Applications of Categories [electronic only]
Similarity:
J. García-Calcines, P. García-Díaz, S. Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Taking cylinder objects, as defined in a model category, we consider a cylinder construction in a cofibration category, which provides a reformulation of relative homotopy in the sense of Baues. Although this cylinder is not a functor we show that it verifies a list of properties which are very closed to those of an I-category (or category with a natural cylinder functor). Considering these new properties, we also give an alternative description of Baues’ relative homotopy groupoids. ...
C. Elvira-Donazar, L. J. Hernandez-Paricio (1995)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Gaucher, Philippe (2003)
Homology, Homotopy and Applications
Similarity:
Friedrich W. Bauer (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: