A suspension theorem for the proper homotopy and strong shape theories

C. Elvira-Donazar; L. J. Hernandez-Paricio

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1995)

  • Volume: 36, Issue: 2, page 98-126
  • ISSN: 1245-530X

How to cite

top

Elvira-Donazar, C., and Hernandez-Paricio, L. J.. "A suspension theorem for the proper homotopy and strong shape theories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 36.2 (1995): 98-126. <http://eudml.org/doc/91564>.

@article{Elvira1995,
author = {Elvira-Donazar, C., Hernandez-Paricio, L. J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {proper homotopy theory; strong shape; metric spaces; suspension},
language = {eng},
number = {2},
pages = {98-126},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A suspension theorem for the proper homotopy and strong shape theories},
url = {http://eudml.org/doc/91564},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Elvira-Donazar, C.
AU - Hernandez-Paricio, L. J.
TI - A suspension theorem for the proper homotopy and strong shape theories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1995
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 36
IS - 2
SP - 98
EP - 126
LA - eng
KW - proper homotopy theory; strong shape; metric spaces; suspension
UR - http://eudml.org/doc/91564
ER -

References

top
  1. [1] A. Artin and B. Mazur, "Étale Homotopy", Lect. Notes in Math., n 100, Springer, 1969. Zbl0182.26001MR245577
  2. [2] H.J. Baues, "Algebraic homotopy", Cambridge Univ. Press, 1988. Zbl0688.55001MR985099
  3. [3] H.J. Baues, "Foundations of proper homotopy theory", preprint 1992. 
  4. [4] A.K. Bousfield and D.M. Kan, "Homotopy limits, Completions and Localizations ", Lecture Notes in Maths.304, Springer-Verlag,1972. Zbl0259.55004MR365573
  5. [5] K. Borsuk, "Concerning homotopy properties of compacta ", Fund. Math.62 (1968) 223-254. Zbl0159.24603MR229237
  6. [6] E.M. Brown, "On the proper homotopy type of simplicial complexes" Lect. Notes in Math., n 375 (1975). 
  7. [7] J. Cabeza, M.C. Elvira and L.J. Hernindez, "Una categoría cofibrada para las aplicaciones propias", Actas del las XIV Jorn. Mat. Hispano-Lusas., sección Geometria y Topologia (1989), Univ. de La Laguna. 
  8. [8] Z. Cerin, "On various relative proper homotopy groups", Tsukuba J. Math., vol 4, 2 (1980) 177-202. Zbl0469.55011MR623435
  9. [9] J.M. Cordier and T. Porter, "Shape Theory. Categorical methods of approximation", Ellis Horwood Series in Math. and its Appl., 1989. Zbl0663.18001MR1000348
  10. [10] D. Edwards and H. Hastings, "Čech and Steenrod homotopy theories with applications to Geometric Topology", Lect. Notes Math., 542, Springer, 1976. Zbl0334.55001MR428322
  11. [11] C. Elvira, "Aplicaciones propias de X en Rn+1", Actas del IV Sem. de Topologia, Bilbao (1988). 
  12. [12] H. Freudenthal, "Über die Klassen der Sphärenabbildungen", Compositio Math., 5 (1937) 299-314. Zbl63.1161.02JFM63.1161.02
  13. [13] P. Gabriel and M. Zisman, "Calculus of fractions and homotopy theory", Springer, Berlin (1966). Zbl0186.56802MR210125
  14. [14] J.W. Grossman, "A homotopy theory of pro-spaces", Trans. Amer. Math. Soc., 201 (1975) 161-176. Zbl0266.55007MR356039
  15. [15] J.W. Grossman, "Homotopy classes of maps between pro-spaces ", Michigan Math. J.21 (1974) 355-362. Zbl0293.55005MR367984
  16. [16] J.W. Grossman, "Homotopy groups of Pro-spaces", Illinois J. Math.20 (1976) 622-625. Zbl0329.55011MR413097
  17. [17] A. Grothendieck, "Technique De Descente Et Théorèmes d'Existence En Géométrie Algèbrique I-IV", Seminar Bourbaki, Exp.190, 195, 212, 221, 1959-60, 1960-61. Zbl0229.14007
  18. [18] J.D.P. Meldrum, "Near-rings and their links with groups", Pitman Publishing Inc, 1985. Zbl0658.16029MR854275
  19. [19] S. Mardešié and J. Segal, "Shape theory", North-Holland, 1982. Zbl0495.55001MR676973
  20. [20] T. Porter, "Cech Homotopy I", J. London Math. Soc.90 (1974) 8-26. Zbl0254.55012MR321080
  21. [21] T. Porter, "Stability Results for Topological spaces", Math. Z.140 (1974) 1-21. Zbl0275.55022MR385846
  22. [22] T. Porter, "Abstract homotopy theory in procategories", Cahiers de topologie et geometrie differentielle, vol 17 (1976) 113-124. Zbl0349.18012MR445496
  23. [23] T. Porter, "Coherent prohomotopical algebra", Cahiers de topologie et geometrie differentielle", vol 18 (1977) 139-179. Zbl0364.18009MR470033
  24. [24] T. Porter, "Coherent pro-homotopy theory", Cahiers de topologie et geometrie differentielle", vol 19 n 1 (1978) 3-45. Zbl0387.55013MR496541
  25. [25] T. Porter, "Čech and Steenrod homotopy and the Quigley exact couple in strong shape and proper homotopy Theory", J. Pure Apl. Alg.24 (1983) 303-312. Zbl0485.55009MR656853
  26. [26] T. Porter, "Homotopy groups for strong shape and proper homotopy", Convegnio di Topologia serie II n4 (1984) 101-113. Zbl0568.55009MR769857
  27. [27] T. Porter, "Proper homotopy, prohomotopy and coherence ", U.C.N.W. Pure Maths Preprint 86.20. 
  28. [28] T. Porter, "On the two definitions of Ho(proC)", Top. and its Appl.28 (1988) 289-293. Zbl0647.18008MR931529
  29. [29] D. Quillen, "Homotopical Algebra", Lect. Notes in Math, 43, Springer, 1967. Zbl0168.20903MR223432
  30. [30] J.B. Quigley, "An exact sequence from the nth to the (n-1)-st fundamental group", Fund. Math.77 (1973) 195-210. Zbl0247.55010MR331379
  31. [31] E. Spanier, "Borsuk's cohomotopy groups", Ann. of Math., 50 (1949) 203-245. Zbl0032.12402MR29170
  32. [32] N.E. Steenrod, "Regular Cycles on Compact Metric Spaces", Ann. of Math.41 (1940) 833-851. Zbl0025.23405MR2544
  33. [33] Strøm, " The homotopy category is a homotopy category", Arch. Math.23 (1973) 435-441. Zbl0261.18015MR321082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.