Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups
Giuseppe Da Prato (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Giuseppe Da Prato (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Antoni Leon Dawidowicz (1989)
Annales Polonici Mathematici
Similarity:
Tserpes, N.A. (1992)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Giulio Pianigiani (1981)
Annales Polonici Mathematici
Similarity:
Anthony Quas (1999)
Studia Mathematica
Similarity:
We consider the topological category of various subsets of the set of expanding maps from a manifold to itself, and show in particular that a generic expanding map of the circle has no absolutely continuous invariant probability measure. This is in contrast with the situation for or expanding maps, for which it is known that there is always a unique absolutely continuous invariant probability measure.
R. Kühne (1982)
Banach Center Publications
Similarity:
Krzysztof Ciesielski, Andrzej Pelc (1985)
Fundamenta Mathematicae
Similarity:
Antal Járai
Similarity:
CONTENTS§1. Introduction...............................................................5§2. Covariant extension of measures..............................6§3. An invariant extension of Haar measure..................15§4. Covariant extension of Lebesgue measure.............22References....................................................................26
Tserpes, N.A. (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Antoni Leon Dawidowicz (1992)
Annales Polonici Mathematici
Similarity:
A method of construction of an invariant measure on a function space is presented.
Das, G., Patel, B.K. (1989)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Richard Bumby, Erik Ellentuck (1969)
Fundamenta Mathematicae
Similarity:
Walter Rudin (1972)
Studia Mathematica
Similarity: