Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 419-431
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] V.I. Bocachev - M. Röckner - B. Schmuland, Generalized Mehler semigroups and applications, Probability and Related Fields114 (1996), 193-225. Zbl0849.60066MR1392452
- [2] A. Choinowska-Michalik - B. Goldys, On Ornstein-Uhlenbeck Generators, preprint S96-12 of the School of Mathematics, The University of New South Wales, 1996.
- [3] G. Da Prato, Null controllability and strong Feller property of Markov transition semigroups, Nonlinear Analysis TMA25 (1995), 9-10, 941-949. Zbl0838.60048MR1350717
- [4] G. Da Prato, Characterization of the domain of an elliptic operator of infinitely many variables in L2(μ) spaces, Rend. Acc. Naz. Lincei, to appear. Zbl0899.47035
- [5] G. Da Prato - J. Zabczyk, "Ergodicity for Infinite Dimensional Systems", LondonMathematical Society Lecture Notes, 1996. Zbl0849.60052MR1417491
- [6] M. Furman, Analyticity of transition semigroups and closability ofbilinear forms in Hilbert spaces, Studia Mathematica115 (1995), 53-71. Zbl0830.47033MR1347432
- [7] Z.M. Ma - M. Rockner, "Introduction to the Theory of (Non Symmetric) Dirichlet Forms", Springer-Verlag, 1992. Zbl0826.31001MR1214375
- [8] D.W. Stroock - B. Zegarlinski, The logaritmic Sobolev inequality for discrete spin systems on a lattice, Commun. Math. Phys.149 (1992), 175-193. Zbl0758.60070MR1182416
- [9] B. Zegarlinski, The strong exponential decay to equilibrium for the stochastic dynamics associated to the unbounded spin systems on a lattice, preprint. Zbl0844.46050