Displaying similar documents to “An alternative method for solving direct and inverse Stokes problems.”

Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations

Charles-Henri Bruneau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Non reflecting boundary conditions on artificial frontiers of the domain are proposed for both incompressible and compressible Navier-Stokes equations. For incompressible flows, the boundary conditions lead to a well-posed problem, convey properly the vortices without any reflections on the artificial limits and allow to compute turbulent flows at high Reynolds numbers. For compressible flows, the boundary conditions convey properly the vortices without any reflections on the artificial...

Vorticity dynamics and numerical resolution of Navier-Stokes equations

Matania Ben-Artzi, Dalia Fishelov, Shlomo Trachtenberg (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present a new methodology for the numerical resolution of the hydrodynamics of incompressible viscid newtonian fluids. It is based on the Navier-Stokes equations and we refer to it as the vorticity projection method. The method is robust enough to handle complex and convoluted configurations typical to the motion of biological structures in viscous fluids. Although the method is applicable to three dimensions, we address here in detail only the two dimensional case. We provide numerical...

On suitable inlet boundary conditions for fluid-structure interaction problems in a channel

Jan Valášek, Petr Sváček, Jaromír Horáček (2019)

Applications of Mathematics

Similarity:

We are interested in the numerical solution of a two-dimensional fluid-structure interaction problem. A special attention is paid to the choice of physically relevant inlet boundary conditions for the case of channel closing. Three types of the inlet boundary conditions are considered. Beside the classical Dirichlet and the do-nothing boundary conditions also a generalized boundary condition motivated by the penalization prescription of the Dirichlet boundary condition is applied. The...

On a steady flow in a three-dimensional infinite pipe

Paweł Konieczny (2006)

Colloquium Mathematicae

Similarity:

The paper examines the steady Navier-Stokes equations in a three-dimensional infinite pipe with mixed boundary conditions (Dirichlet and slip boundary conditions). The velocity of the fluid is assumed to be constant at infinity. The main results show the existence of weak solutions with no restriction on smallness of the flux vector and boundary conditions.