The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Hopf diagrams and quantum invariants.”

Squared Hopf algebras and reconstruction theorems

Volodymyr Lyubashenko (1997)

Banach Center Publications

Similarity:

Given an abelian 𝑉-linear rigid monoidal category 𝑉, where 𝑉 is a perfect field, we define squared coalgebras as objects of cocompleted 𝑉 ⨂ 𝑉 (Deligne's tensor product of categories) equipped with the appropriate notion of comultiplication. Based on this, (squared) bialgebras and Hopf algebras are defined without use of braiding. If 𝑉 is the category of 𝑉-vector spaces, squared (co)algebras coincide with conventional ones. If 𝑉 is braided, a braided Hopf algebra can be obtained...

Representations, duals and quantum doubles of monoidal categories

Majid, Shahn

Similarity:

[For the entire collection see Zbl 0742.00067.]The Tanaka-Krein type equivalence between Hopf algebras and functored monoidal categories provides the heuristic strategy of this paper. The author introduces the notion of a double cross product of monoidal categories as a generalization of double cross product of Hopf algebras, and explains some of the motivation from physics (the representation theory for double quantum groups).The Hopf algebra constructions are formulated in terms of...

Categorical length, relative L-S category and higher Hopf invariants

Norio Iwase (2009)

Banach Center Publications

Similarity:

In this paper we introduce the categorical length, a homotopy version of Fox categorical sequence, and an extended version of relative L-S category which contains the classical notions of Berstein-Ganea and Fadell-Husseini. We then show that, for a space or a pair, the categorical length for categorical sequences is precisely the L-S category or the relative L-S category in the sense of Fadell-Husseini respectively. Higher Hopf invariants, cup length, module weights, and recent computations...

Bicovariant differential calculi and cross products on braided Hopf algebras

Yuri Bespalov, Bernhard Drabant (1997)

Banach Center Publications

Similarity:

In a braided monoidal category C we consider Hopf bimodules and crossed modules over a braided Hopf algebra H. We show that both categories are equivalent. It is discussed that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category of bialgebra projections over H. Using these results we generalize the Radford-Majid criterion and show that bialgebra cross products over the Hopf algebra H are precisely described by H-crossed module bialgebras. In specific...

Smash (co)products and skew pairings.

José N. Alonso Alvarez, José Manuel Fernández Vilaboa, Ramón González Rodríguez (2001)

Publicacions Matemàtiques

Similarity:

Let τ be an invertible skew pairing on (B,H) where B and H are Hopf algebras in a symmetric monoidal category C with (co)equalizers. Assume that H is quasitriangular. Then we obtain a new algebra structure such that B is a Hopf algebra in the braided category γD and there exists a Hopf algebra isomorphism w: B ∞ H → B [×] H in C, where B ∞ H is a Hopf algebra with (co)algebra structure the smash (co)product and B [×] H is the Hopf algebra defined by Doi and Takeuchi. ...