Displaying similar documents to “Connectivity of the lifts of a greedoid.”

Rainbow Connection In Sparse Graphs

Arnfried Kemnitz, Jakub Przybyło, Ingo Schiermeyer, Mariusz Woźniak (2013)

Discussiones Mathematicae Graph Theory

Similarity:

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.

On the doubly connected domination number of a graph

Joanna Cyman, Magdalena Lemańska, Joanna Raczek (2006)

Open Mathematics

Similarity:

For a given connected graph G = (V, E), a set D V ( G ) is a doubly connected dominating set if it is dominating and both 〈D〉 and 〈V (G)-D〉 are connected. The cardinality of the minimum doubly connected dominating set in G is the doubly connected domination number. We investigate several properties of doubly connected dominating sets and give some bounds on the doubly connected domination number.

Connected domatic number in planar graphs

Bert L. Hartnell, Douglas F. Rall (2001)

Czechoslovak Mathematical Journal

Similarity:

A dominating set in a graph G is a connected dominating set of G if it induces a connected subgraph of G . The connected domatic number of G is the maximum number of pairwise disjoint, connected dominating sets in V ( G ) . We establish a sharp lower bound on the number of edges in a connected graph with a given order and given connected domatic number. We also show that a planar graph has connected domatic number at most 4 and give a characterization of planar graphs having connected domatic...