N 2 -locally connected graphs and their upper embeddability

Ladislav Nebeský

Czechoslovak Mathematical Journal (1991)

  • Volume: 41, Issue: 4, page 731-735
  • ISSN: 0011-4642

How to cite

top

Nebeský, Ladislav. "$N_2$-locally connected graphs and their upper embeddability." Czechoslovak Mathematical Journal 41.4 (1991): 731-735. <http://eudml.org/doc/13967>.

@article{Nebeský1991,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {connected graphs; upper embeddability; 2-cell},
language = {eng},
number = {4},
pages = {731-735},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$N_2$-locally connected graphs and their upper embeddability},
url = {http://eudml.org/doc/13967},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Nebeský, Ladislav
TI - $N_2$-locally connected graphs and their upper embeddability
JO - Czechoslovak Mathematical Journal
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 41
IS - 4
SP - 731
EP - 735
LA - eng
KW - connected graphs; upper embeddability; 2-cell
UR - http://eudml.org/doc/13967
ER -

References

top
  1. M. Behzad G. Chartrand, L. Lesniak-Foster, Graphs & Digraphs, Prindle, Weber & Schmidt, Boston 1979. (1979) MR0525578
  2. G. Chartrand, R. E. Pippert, Locally connected graphs, Časopis pěst. mat. 99 (1974), 158-163. (1974) Zbl0278.05113MR0398872
  3. A. D. Glukhov, On chord-critical graphs, (in Russian). In: Some Topological and Combinatorial Properties of Graphs. Preprint 80.8. IM AN USSR, Kiev 1980, pp. 24-27. (1980) MR0583198
  4. N. P. Homenko, A. D. Glukhov, One-component 2-cell embeddings and the maximum genus of a graph, (in Russian). In: Some Topological and Combinatorial Properties of Graphs. Preprint 80.8 IM AN USSR, Kiev 1980, pp. 5-23. (1980) MR0583197
  5. N. P. Homenko N. A. Ostroverkhy, V. A. Kusmenko, The maximum genus of graphs, (in Ukrainian, English summary). In: -Transformations of Graphs (N. P. Homenko, ed.) IM AN URSR, Kiev 1973, pp. 180-210. (1973) MR0422065
  6. M. Jungerman, A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401-406. (1978) Zbl0379.05025MR0492309
  7. L. Nebeský, 10.1002/jgt.3190050211, J. Graph Theory 5 (1981), 205-207. (1981) MR0615009DOI10.1002/jgt.3190050211
  8. L. Nebeský, A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31 (106) (1981), 604-613. (1981) MR0631605
  9. L. Nebeský, On locally quasiconnected graphs and their upper embeddability, Czechoslovak Math. J. 35 (110) (1985), 162-166. (1985) MR0779344
  10. Z. Ryjáček, On graphs with isomorphic, non-isomorphic and connected N 2 -neighbourhoods, Časopis pěst. mat. 112 (1987), 66-79. (1987) MR0880933
  11. J. Sedláček, Local properties of graphs, (in Czech). Časopis pěst. mat. 106 (1981), 290-298. (1981) MR0629727
  12. D. W. VanderJagt, Sufficient conditions for locally connected graphs, Časopis pěst. mat. 99 (1974), 400-404. (1974) Zbl0294.05123MR0543786
  13. A. T. White, Graphs, Groups, and Surfaces, North-Holland, Amsterdam 1984. (1984) Zbl0551.05037MR0780555
  14. N. H. Xuong, 10.1016/0095-8956(79)90058-3, J. Combinatorial Theory Ser. B26 (1979), 217-225. (1979) Zbl0403.05035MR0532589DOI10.1016/0095-8956(79)90058-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.