The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An optimal method of Galerkin type for diffusion-dispersion problems.”

Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model

Nicolas Bouillard, Robert Eymard, Raphaele Herbin, Philippe Montarnal (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Modeling the kinetics of a precipitation dissolution reaction occurring in a porous medium where diffusion also takes place leads to a system of two parabolic equations and one ordinary differential equation coupled with a stiff reaction term. This system is discretized by a finite volume scheme which is suitable for the approximation of the discontinuous reaction term of unknown sign. Discrete solutions are shown to exist and converge towards a weak solution of the continuous...

N -widths for singularly perturbed problems

Martin Stynes, R. Bruce Kellogg (2002)

Mathematica Bohemica

Similarity:

Kolmogorov N -widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the N -widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.