The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A generalization of the Maligranda--Orlicz Lemma.”

Rademacher series from Orlicz to the present day

N. J. Kalton (2004)

Banach Center Publications

Similarity:

We survey some questions on Rademacher series in both Banach and quasi-Banach spaces which have been the subject of extensive research from the time of Orlicz to the present day.

On Simons' version of Hahn-Banach-Lagrange theorem

Jerzy Grzybowski, Hubert Przybycień, Ryszard Urbański (2014)

Banach Center Publications

Similarity:

In this paper we generalize in Theorem 12 some version of Hahn-Banach Theorem which was obtained by Simons. We also present short proofs of Mazur and Mazur-Orlicz Theorem (Theorems 2 and 3).

Mazur-Orlicz equality

Fon-Che Liu (2008)

Studia Mathematica

Similarity:

A remarkable theorem of Mazur and Orlicz which generalizes the Hahn-Banach theorem is here put in a convenient form through an equality which will be referred to as the Mazur-Orlicz equality. Applications of the Mazur-Orlicz equality to lower barycenters for means, separation principles, Lax-Milgram lemma in reflexive Banach spaces, and monotone variational inequalities are provided.

Weak compactness and Orlicz spaces

Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza (2008)

Colloquium Mathematicae

Similarity:

We give new proofs that some Banach spaces have Pełczyński's property (V).

Banach-Saks property in some Banach sequence spaces

Yunan Cui, Henryk Hudzik, Ryszard Płuciennik (1997)

Annales Polonici Mathematici

Similarity:

It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.