Displaying similar documents to “Bipolar convergence in genetic algorithm for multimodal optimization.”

Parameter Identification of a Fed-Batch Cultivation of S. Cerevisiae using Genetic Algorithms

Angelova, Maria, Tzonkov, Stoyan, Pencheva, Tania (2010)

Serdica Journal of Computing

Similarity:

Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for...

Theoretical analysis of steady state genetic algorithms

Alexandru Agapie, Alden H. Wright (2014)

Applications of Mathematics

Similarity:

Evolutionary Algorithms, also known as Genetic Algorithms in a former terminology, are probabilistic algorithms for optimization, which mimic operators from natural selection and genetics. The paper analyses the convergence of the heuristic associated to a special type of Genetic Algorithm, namely the Steady State Genetic Algorithm (SSGA), considered as a discrete-time dynamical system non-generational model. Inspired by the Markov chain results in finite Evolutionary Algorithms, conditions...