The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Topological dynamics and the extension of Lyapunov's method”

Absolutely continuous functions of several variables and diffeomorphisms

Stanislav Hencl, Jan Malý (2003)

Open Mathematics

Similarity:

In [4], a class of absolutely continuous functions of d-variables, motivated by applications to change of variables in an integral, has been introduced. The main result of this paper states that absolutely continuous functions in the sense of [4] are not stable under diffeomorphisms. We also show an example of a function which is absolutely continuous with respect cubes but not with respect to balls.

Viscosity solutions of the Bellman equation for exit time optimal control problems with non-Lipschitz dynamics

Michael Malisoff (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the Bellman equation for undiscounted exit time optimal control problems with fully nonlinear lagrangians and fully nonlinear dynamics using the dynamic programming approach. We allow problems whose non-Lipschitz dynamics admit more than one solution trajectory for some choices of open loop controls and initial positions. We prove a uniqueness theorem which characterizes the value functions of these problems as the unique viscosity solutions of the corresponding Bellman equations...

A topological invariant for pairs of maps

Marcelo Polezzi, Claudemir Aniz (2006)

Open Mathematics

Similarity:

In this paper we develop the notion of contact orders for pairs of continuous self-maps (f, g) from ℝn, showing that the set Con(f, g) of all possible contact orders between f and g is a topological invariant (we remark that Con(f, id) = Per(f)). As an interesting application of this concept, we give sufficient conditions for the graphs of two continuous self-maps from ℝ intersect each other. We also determine the ordering of the sets Con(f, 0) and Con(f, h), for h ∈ Hom(ℝ) such that...