A smooth Lyapunov function from a class- estimate involving two positive semidefinite functions
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 313-367
- ISSN: 1292-8119
Access Full Article
topHow to cite
topTeel, Andrew R., and Praly, Laurent. "A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 313-367. <http://eudml.org/doc/90573>.
@article{Teel2000,
author = {Teel, Andrew R., Praly, Laurent},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {differential inclusions; uniform asymptotic stability; smooth converse Lyapunov function},
language = {eng},
pages = {313-367},
publisher = {EDP Sciences},
title = {A smooth Lyapunov function from a class-$\mathcal \{KL\}$ estimate involving two positive semidefinite functions},
url = {http://eudml.org/doc/90573},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Teel, Andrew R.
AU - Praly, Laurent
TI - A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 313
EP - 367
LA - eng
KW - differential inclusions; uniform asymptotic stability; smooth converse Lyapunov function
UR - http://eudml.org/doc/90573
ER -
References
top- [1] A.N. Atassi and H.K. Khalil, A separation principle for the control of a class of nonlinear systems, in Proc. of the 37th IEEE Conference on Decision and Control Tampa, FL ( 1998) 855-860.
- [2] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory. Springer-Verlag, New York ( 1984). Zbl0538.34007MR755330
- [3] J.-P. Aubin and H. Frankowska, Set-valued Analysis. Birkhauser, Boston ( 1990). Zbl0713.49021MR1048347
- [4] A. Bacciotti and L. Rosier, Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 ( 1998) 101-128. Zbl0919.34051MR1628047
- [5] E.A. Barbashin and N.N Krasovskii, On the existence of a function of Lyapunov in the case of asymptotic stability in the large. Prikl. Mat. Mekh. 18 ( 1954) 345-350. Zbl0055.32005MR62301
- [6] F.H. Clarke, Y.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 ( 1998) 69-114. Zbl0907.34013MR1643670
- [7] F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer ( 1998). Zbl1047.49500MR1488695
- [8] F.H. Clarke, R.J. Stern and P.R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Canad. J. Math. 45 ( 1993) 1167-1183. Zbl0810.49016MR1247540
- [9] W.P. Dayanwansa and C.F. Martin, A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Trans. Automat. Control 44 ( 1999) 751-764. Zbl0960.93046MR1684429
- [10] K. Deimling, Multivalued Differential Equations. Walter de Gruyter, Berlin ( 1992). Zbl0760.34002MR1189795
- [11] A.F. Filippov, On certain questions in the theory of optimal control. SIAM J. Control 1 ( 1962) 76-84. Zbl0139.05102MR149985
- [12] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers ( 1988). Zbl0664.34001MR1028776
- [13] W. Hahn, Stability of Motion. Springer-Verlag ( 1967). Zbl0189.38503MR223668
- [14] F.C. Hoppensteadt, Singular perturbations on the infinite interval. Trans. Amer. Math. Soc. 123 ( 1966) 521-535. Zbl0151.12502MR194693
- [15] J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. Amer. Math. Soc. Trans. Ser. 2 24 ( 1956) 19-77. Zbl0127.30703
- [16] V. Lakshmikantham, S. Leela and A.A. Martynyuk, Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc. ( 1989). Zbl0676.34003MR984861
- [17] V. Lakshmikantham and L. Salvadori, On Massera type converse theorem in terms of two different measures. Bull. U.M.I. 13 ( 1976) 293-301. Zbl0351.34030MR440136
- [18] Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 ( 1996) 124-160. Zbl0856.93070MR1372908
- [19] A.M. Lyapunov, The general problem of the stability of motion. Math. Soc. of Kharkov, 1892 (Russian). [English Translation: Internat. J. Control 55 ( 1992) 531-773]. Zbl0786.70001MR1154209
- [20] I.G. Malkin, On the question of the reciprocal of Lyapunov's theorem on asymptotic stability. Prikl. Mat. Mekh. 18 ( 1954) 129-138. Zbl0055.32004
- [21] J.L. Massera, On Liapounoff's conditions of stability. Ann. of Math. 50 ( 1949) 705-721. Zbl0038.25003MR35354
- [22] J.L. Massera, Contributions to stability theory. Ann. of Math. 64 ( 1956) 182-206. (Erratum: Ann. of Math. 68 ( 1958) 202.) Zbl0070.31003MR79179
- [23] A.M. Meilakhs, Design of stable control systems subject to parametric perturbations. Avtomat. i Telemekh. 10 ( 1978) 5-16. Zbl0419.93038MR533365
- [24] A.P. Molchanov and E.S. Pyatnitskii, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I. Avtomat. i Telemekh. ( 1986) 63-73. Zbl0607.93039MR839959
- [25] A.P. Molchanov and E.S. Pyatnitskiin, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II. Avtomat. i Telemekh. ( 1986) 5-14. Zbl0618.93051MR848396
- [26] A.P. Molchanov and E.S. Pyatnitskii, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 ( 1989) 59-64. Zbl0684.93065MR1006848
- [27] A.A. Movchan, Stability of processes with respect to two measures. Prikl. Mat. Mekh. ( 1960) 988-1001. Zbl0100.08401
- [28] I.P. Natanson, Theory of Functions of a Real Variable. Vol. 1. Frederick Ungar Publishing Co. ( 1974). Zbl0064.29102MR67952
- [29] E.P. Ryan, Discontinuous feedback and universal adaptive stabilization, in Control of Uncertain Systems, edited by D. Hinrichsen and B. Martensson. Birkhauser, Boston ( 1990) 245-258. Zbl0726.93069MR1206689
- [30] E.D. Sontag, Comments on integral variants of ISS. Systems Control Lett. 34 ( 1998) 93-100. Zbl0902.93062MR1629012
- [31] E.D. Sontag and Y. Wang, A notion of input to output stability, in Proc. European Control Conf. Brussels ( 1997), Paper WE-E A2, CD-ROM file ECC958.pdf.
- [32] E.D. Sontag and Y. Wang, Notions of input to output stability. Systems Control Lett. 38 ( 1999) 235-248. Zbl0985.93051MR1754906
- [33] E.D. Sontag and Y. Wang, Lyapunov characterizations of input to output stability. SIAM J. Control Optim. (to appear). Zbl0968.93076MR1339057
- [34] A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Cambridge University Press, New York ( 1996). Zbl0869.65043MR1402909
- [35] A.R. Teel and L. Praly, Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 ( 1995) 1443-1488. Zbl0843.93057MR1348117
- [36] J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal. 13 ( 1989) 63-74. Zbl0695.93083MR973369
- [37] J. Tsinias and N. Kalouptsidis, Prolongations and stability analysis via Lyapunov functions of dynamical polysystems. Math. Systems Theory 20 ( 1987) 215-233. Zbl0642.93052MR920776
- [38] J. Tsinias, N. Kalouptsidis and A. Bacciotti, Lyapunov functions and stability of dynamical polysystems. Math. Systems Theory 19 ( 1987) 333-354. Zbl0628.93056MR888495
- [39] V.I. Vorotnikov, Stability and stabilization of motion: Research approaches, results, distinctive characteristics. Avtomat. i Telemekh. ( 1993) 3-62. Zbl0800.93947MR1225444
- [40] F.W. Wilson, Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc. 139 ( 1969) 413-428. Zbl0175.20203MR251747
- [41] T. Yoshizawa, Stability Theory by Lyapunov's Second Method. The Mathematical Society of Japan ( 1966). Zbl0144.10802MR208086
- [42] K. Yosida, Functional Analysis, 2nd Edition. Springer Verlag, New York ( 1968). Zbl0435.46002MR239384
Citations in EuDML Documents
top- Ludovic Rifford, On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
- Ludovic Rifford, On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
- Iasson Karafyllis, John Tsinias, Control Lyapunov functions and stabilization by means of continuous time-varying feedback
- Iasson Karafyllis, John Tsinias, Control Lyapunov functions and stabilization by means of continuous time-varying feedback
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.