A smooth Lyapunov function from a class- 𝒦ℒ estimate involving two positive semidefinite functions

Andrew R. Teel; Laurent Praly

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 313-367
  • ISSN: 1292-8119

How to cite

top

Teel, Andrew R., and Praly, Laurent. "A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 313-367. <http://eudml.org/doc/90573>.

@article{Teel2000,
author = {Teel, Andrew R., Praly, Laurent},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {differential inclusions; uniform asymptotic stability; smooth converse Lyapunov function},
language = {eng},
pages = {313-367},
publisher = {EDP Sciences},
title = {A smooth Lyapunov function from a class-$\mathcal \{KL\}$ estimate involving two positive semidefinite functions},
url = {http://eudml.org/doc/90573},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Teel, Andrew R.
AU - Praly, Laurent
TI - A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 313
EP - 367
LA - eng
KW - differential inclusions; uniform asymptotic stability; smooth converse Lyapunov function
UR - http://eudml.org/doc/90573
ER -

References

top
  1. [1] A.N. Atassi and H.K. Khalil, A separation principle for the control of a class of nonlinear systems, in Proc. of the 37th IEEE Conference on Decision and Control Tampa, FL ( 1998) 855-860. 
  2. [2] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory. Springer-Verlag, New York ( 1984). Zbl0538.34007MR755330
  3. [3] J.-P. Aubin and H. Frankowska, Set-valued Analysis. Birkhauser, Boston ( 1990). Zbl0713.49021MR1048347
  4. [4] A. Bacciotti and L. Rosier, Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 ( 1998) 101-128. Zbl0919.34051MR1628047
  5. [5] E.A. Barbashin and N.N Krasovskii, On the existence of a function of Lyapunov in the case of asymptotic stability in the large. Prikl. Mat. Mekh. 18 ( 1954) 345-350. Zbl0055.32005MR62301
  6. [6] F.H. Clarke, Y.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 ( 1998) 69-114. Zbl0907.34013MR1643670
  7. [7] F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer ( 1998). Zbl1047.49500MR1488695
  8. [8] F.H. Clarke, R.J. Stern and P.R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Canad. J. Math. 45 ( 1993) 1167-1183. Zbl0810.49016MR1247540
  9. [9] W.P. Dayanwansa and C.F. Martin, A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Trans. Automat. Control 44 ( 1999) 751-764. Zbl0960.93046MR1684429
  10. [10] K. Deimling, Multivalued Differential Equations. Walter de Gruyter, Berlin ( 1992). Zbl0760.34002MR1189795
  11. [11] A.F. Filippov, On certain questions in the theory of optimal control. SIAM J. Control 1 ( 1962) 76-84. Zbl0139.05102MR149985
  12. [12] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers ( 1988). Zbl0664.34001MR1028776
  13. [13] W. Hahn, Stability of Motion. Springer-Verlag ( 1967). Zbl0189.38503MR223668
  14. [14] F.C. Hoppensteadt, Singular perturbations on the infinite interval. Trans. Amer. Math. Soc. 123 ( 1966) 521-535. Zbl0151.12502MR194693
  15. [15] J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. Amer. Math. Soc. Trans. Ser. 2 24 ( 1956) 19-77. Zbl0127.30703
  16. [16] V. Lakshmikantham, S. Leela and A.A. Martynyuk, Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc. ( 1989). Zbl0676.34003MR984861
  17. [17] V. Lakshmikantham and L. Salvadori, On Massera type converse theorem in terms of two different measures. Bull. U.M.I. 13 ( 1976) 293-301. Zbl0351.34030MR440136
  18. [18] Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 ( 1996) 124-160. Zbl0856.93070MR1372908
  19. [19] A.M. Lyapunov, The general problem of the stability of motion. Math. Soc. of Kharkov, 1892 (Russian). [English Translation: Internat. J. Control 55 ( 1992) 531-773]. Zbl0786.70001MR1154209
  20. [20] I.G. Malkin, On the question of the reciprocal of Lyapunov's theorem on asymptotic stability. Prikl. Mat. Mekh. 18 ( 1954) 129-138. Zbl0055.32004
  21. [21] J.L. Massera, On Liapounoff's conditions of stability. Ann. of Math. 50 ( 1949) 705-721. Zbl0038.25003MR35354
  22. [22] J.L. Massera, Contributions to stability theory. Ann. of Math. 64 ( 1956) 182-206. (Erratum: Ann. of Math. 68 ( 1958) 202.) Zbl0070.31003MR79179
  23. [23] A.M. Meilakhs, Design of stable control systems subject to parametric perturbations. Avtomat. i Telemekh. 10 ( 1978) 5-16. Zbl0419.93038MR533365
  24. [24] A.P. Molchanov and E.S. Pyatnitskii, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I. Avtomat. i Telemekh. ( 1986) 63-73. Zbl0607.93039MR839959
  25. [25] A.P. Molchanov and E.S. Pyatnitskiin, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II. Avtomat. i Telemekh. ( 1986) 5-14. Zbl0618.93051MR848396
  26. [26] A.P. Molchanov and E.S. Pyatnitskii, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 ( 1989) 59-64. Zbl0684.93065MR1006848
  27. [27] A.A. Movchan, Stability of processes with respect to two measures. Prikl. Mat. Mekh. ( 1960) 988-1001. Zbl0100.08401
  28. [28] I.P. Natanson, Theory of Functions of a Real Variable. Vol. 1. Frederick Ungar Publishing Co. ( 1974). Zbl0064.29102MR67952
  29. [29] E.P. Ryan, Discontinuous feedback and universal adaptive stabilization, in Control of Uncertain Systems, edited by D. Hinrichsen and B. Martensson. Birkhauser, Boston ( 1990) 245-258. Zbl0726.93069MR1206689
  30. [30] E.D. Sontag, Comments on integral variants of ISS. Systems Control Lett. 34 ( 1998) 93-100. Zbl0902.93062MR1629012
  31. [31] E.D. Sontag and Y. Wang, A notion of input to output stability, in Proc. European Control Conf. Brussels ( 1997), Paper WE-E A2, CD-ROM file ECC958.pdf. 
  32. [32] E.D. Sontag and Y. Wang, Notions of input to output stability. Systems Control Lett. 38 ( 1999) 235-248. Zbl0985.93051MR1754906
  33. [33] E.D. Sontag and Y. Wang, Lyapunov characterizations of input to output stability. SIAM J. Control Optim. (to appear). Zbl0968.93076MR1339057
  34. [34] A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Cambridge University Press, New York ( 1996). Zbl0869.65043MR1402909
  35. [35] A.R. Teel and L. Praly, Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 ( 1995) 1443-1488. Zbl0843.93057MR1348117
  36. [36] J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal. 13 ( 1989) 63-74. Zbl0695.93083MR973369
  37. [37] J. Tsinias and N. Kalouptsidis, Prolongations and stability analysis via Lyapunov functions of dynamical polysystems. Math. Systems Theory 20 ( 1987) 215-233. Zbl0642.93052MR920776
  38. [38] J. Tsinias, N. Kalouptsidis and A. Bacciotti, Lyapunov functions and stability of dynamical polysystems. Math. Systems Theory 19 ( 1987) 333-354. Zbl0628.93056MR888495
  39. [39] V.I. Vorotnikov, Stability and stabilization of motion: Research approaches, results, distinctive characteristics. Avtomat. i Telemekh. ( 1993) 3-62. Zbl0800.93947MR1225444
  40. [40] F.W. Wilson, Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc. 139 ( 1969) 413-428. Zbl0175.20203MR251747
  41. [41] T. Yoshizawa, Stability Theory by Lyapunov's Second Method. The Mathematical Society of Japan ( 1966). Zbl0144.10802MR208086
  42. [42] K. Yosida, Functional Analysis, 2nd Edition. Springer Verlag, New York ( 1968). Zbl0435.46002MR239384

Citations in EuDML Documents

top
  1. Ludovic Rifford, On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
  2. Ludovic Rifford, On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
  3. Iasson Karafyllis, John Tsinias, Control Lyapunov functions and stabilization by means of continuous time-varying feedback
  4. Iasson Karafyllis, John Tsinias, Control Lyapunov functions and stabilization by means of continuous time-varying feedback

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.