An extension theorem for supertemperatures.
Watson, Neil A. (2008)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Watson, Neil A. (2008)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Ballico, E., Cossidente, A. (1996)
Mathematica Pannonica
Similarity:
Stepanov, V.N. (2005)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Hahlomaa, Immo (2007)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Alexandre Eremenko, Dmitry Jakobson, Nikolai Nadirashvili (2007)
Annales de l’institut Fourier
Similarity:
We discuss possible topological configurations of nodal sets, in particular the number of their components, for spherical harmonics on . We also construct a solution of the equation in that has only two nodal domains. This equation arises in the study of high energy eigenfunctions.
Kazarina, V.I. (2006)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Agarwal, Ravi P., O'Regan, Donal (2001)
Georgian Mathematical Journal
Similarity:
Righi, Céline (2007)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Daniyarova, Eh.Yu. (2007)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Kulpeshov, B.Sh. (2006)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Mario De Salvo, Domenico Freni, Giovanni Lo Faro (2008)
Matematički Vesnik
Similarity:
Lepsveridze, G. (1998)
Georgian Mathematical Journal
Similarity:
Ewa Zadrzyńska, Wojciech M. Zajączkowski (1994)
Annales Polonici Mathematici
Similarity:
The motion of a viscous compressible heat conducting fluid in a domain in ℝ³ bounded by a free surface is considered. We prove local existence and uniqueness of solutions in Sobolev-Slobodetskiĭ spaces in two cases: with surface tension and without it.
Akimov, A.A. (2006)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Edwards, Tim (2006)
Algebraic & Geometric Topology
Similarity:
Dmitry Dolgopyat, Vadim Sidorov (1995)
Fundamenta Mathematicae
Similarity:
We study Brownian zeroes in the neighborhood of which one can observe a non-typical growth rate of Brownian excursions. We interpret the multifractal curve for the Brownian zeroes calculated in [6] as the Hausdorff dimension of certain sets. This provides an example of the multifractal analysis of a statistically self-similar random fractal when both the spacing and the size of the corresponding nested sets are random.