Displaying similar documents to “About relationship between generalized structurable algebras and Lie related triples.”

The construction of 3-Lie 2-algebras

Chunyue Wang, Qingcheng Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.

Lie Derivations on Trivial Extension Algebras

Amir Hosein Mokhtari, Fahimeh Moafian, Hamid Reza Ebrahimi Vishki (2017)

Annales Mathematicae Silesianae

Similarity:

In this paper we provide some conditions under which a Lie derivation on a trivial extension algebra is proper, that is, it can be expressed as a sum of a derivation and a center valued map vanishing at commutators. We then apply our results for triangular algebras. Some illuminating examples are also included.

Restricted and quasi-toral restricted Lie-Rinehart algebras

Bing Sun, Liangyun Chen (2015)

Open Mathematics

Similarity:

In this paper, we introduce the definition of restrictable Lie-Rinehart algebras, the concept of restrictability is by far more tractable than that of a restricted Lie-Rinehart algebra. Moreover, we obtain some properties of p-mappings and restrictable Lie-Rinehart algebras. Finally, we give some sufficient conditions for the commutativity of quasi-toral restricted Lie-Rinehart algebras and study how a quasi-toral restricted Lie-Rinehart algebra with zero center and of minimal dimension...

Malcev h*-algebras.

M. Cabrera, J. Martínez Moreno, A. Rodríguez (1986)

Extracta Mathematicae

Similarity:

Drinfeld-Sokolov hierarchies on truncated current Lie algebras

Paolo Casati (2011)

Banach Center Publications

Similarity:

In this paper we construct on truncated current Lie algebras integrable hierarchies of partial differential equations, which generalize the Drinfeld-Sokolov hierarchies defined on Kac-Moody Lie algebras.

Poisson-Lie groupoids and the contraction procedure

Kenny De Commer (2015)

Banach Center Publications

Similarity:

On the level of Lie algebras, the contraction procedure is a method to create a new Lie algebra from a given Lie algebra by rescaling generators and letting the scaling parameter tend to zero. One of the most well-known examples is the contraction from 𝔰𝔲(2) to 𝔢(2), the Lie algebra of upper-triangular matrices with zero trace and purely imaginary diagonal. In this paper, we will consider an extension of this contraction by taking also into consideration the natural bialgebra structures...