Variations for spanning trees.
Zsakó, László (2006)
Annales Mathematicae et Informaticae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Zsakó, László (2006)
Annales Mathematicae et Informaticae
Similarity:
Rahman, Mohammad Sohel, Kaykobad, Mohammad (2004)
Applied Mathematics E-Notes [electronic only]
Similarity:
Kyohei Kozawa, Yota Otachi (2011)
Discussiones Mathematicae Graph Theory
Similarity:
Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.
Sun, Ling-li (2007)
Applied Mathematics E-Notes [electronic only]
Similarity:
Dionisio Pérez-Brito, Nenad Mladenović, José A. Moreno-Pérez (1998)
The Yugoslav Journal of Operations Research
Similarity:
Mirko Vujošević, Milan Stanojević (2003)
The Yugoslav Journal of Operations Research
Similarity:
Prodinger, Helmut (1996)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Masayoshi Matsushita, Yota Otachi, Toru Araki (2015)
Discussiones Mathematicae Graph Theory
Similarity:
Two spanning trees T1 and T2 of a graph G are completely independent if, for any two vertices u and v, the paths from u to v in T1 and T2 are internally disjoint. For a graph G, we denote the maximum number of pairwise completely independent spanning trees by cist(G). In this paper, we consider cist(G) when G is a partial k-tree. First we show that [k/2] ≤ cist(G) ≤ k − 1 for any k-tree G. Then we show that for any p ∈ {[k/2], . . . , k − 1}, there exist infinitely many k-trees G such...
Viet Hung Nguyen (2007)
RAIRO - Operations Research
Similarity:
Given a weighted undirected graph , a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of . Arkin, Halldórsson and Hassin (1993) give approximation algorithms with factors respectively 3.5 and 5.5. Later Könemann, Konjevod, Parekh, and Sinha (2003) study the linear programming relaxations...
Plesník, Ján (1991)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Štefan Berežný, Vladimír Lacko (2005)
Kybernetika
Similarity:
Suppose a graph whose edges are partitioned into disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number of categories and present some polynomial algorithm.
Damir Vukičević (2009)
Kragujevac Journal of Mathematics
Similarity: