Displaying similar documents to “A Numerical Method to Boundary Value Problems for Second Order Delay Differential Equations.”

Multiple positive solutions for a second order delay boundary value problem on the half-line

K. G. Mavridis, Ch. G. Philos, P. Ch. Tsamatos (2006)

Annales Polonici Mathematici

Similarity:

Second order nonlinear delay differential equations are considered, and Krasnosel'skiĭ's fixed point theorem is used to establish a result on the existence of positive solutions of a boundary value problem on the half-line. This result can be used to guarantee the existence of multiple positive solutions. A specification of the result obtained to the case of second order nonlinear ordinary differential equations as well as to a particular case of second order nonlinear delay differential...

Characterization of shadowing for linear autonomous delay differential equations

Mihály Pituk, John Ioannis Stavroulakis (2025)

Czechoslovak Mathematical Journal

Similarity:

A well-known shadowing theorem for ordinary differential equations is generalized to delay differential equations. It is shown that a linear autonomous delay differential equation is shadowable if and only if its characteristic equation has no root on the imaginary axis. The proof is based on the decomposition theory of linear delay differential equations.

On a boundary value problem on the half-line for nonlinear two-dimensional delay differential systems

Ch. G. Philos (2007)

Annales Polonici Mathematici

Similarity:

This article is concerned with a boundary value problem on the half-line for nonlinear two-dimensional delay differential systems. By the use of the Schauder-Tikhonov theorem, a result on the existence of solutions is obtained. Also, via the Banach contraction principle, another result concerning the existence and uniqueness of solutions is established. Moreover, these results are applied to the special case of ordinary differential systems and to a certain class of delay differential...

Existence results for delay second order differential inclusions

Dalila Azzam-Laouir, Tahar Haddad (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, some fixed point principle is applied to prove the existence of solutions for delay second order differential inclusions with three-point boundary conditions in the context of a separable Banach space. A topological property of the solutions set is also established.

Delay-dependent stability of linear multi-step methods for linear neutral systems

Guang-Da Hu, Lizhen Shao (2020)

Kybernetika

Similarity:

In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition...

Numerical treatment of initial value problems for delay differential systems

Chocholatý, Pavol

Similarity:

This paper deals with the numerical solution of the Cauchy problem for systems of ordinary differential equations with time delay. One-step numerical methods and appropriate interpolation operators are used. Numerical results for a system of three differential equations are presented.

Oscillation of delay differential equations

J. Džurina (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.

Delay-dependent stability of high-order neutral systems

Yanbin Zhao, Guang-Da Hu (2021)

Kybernetika

Similarity:

In this note, we are concerned with delay-dependent stability of high-order delay systems of neutral type. A bound of unstable eigenvalues of the systems is derived by the spectral radius of a nonnegative matrix. The nonnegative matrix is related to the coefficient matrices. A stability criterion is presented which is a necessary and sufficient condition for the delay-dependent stability of the systems. Based on the criterion, a numerical algorithm is provided which avoids the computation...