A Mixed Finite Element Approximation of the Navier-Stokes Equations.
P. LeTallec (1980)
Numerische Mathematik
Similarity:
P. LeTallec (1980)
Numerische Mathematik
Similarity:
Rolf Stenberg (1989/90)
Numerische Mathematik
Similarity:
Claes Johnson (1978)
Publications mathématiques et informatique de Rennes
Similarity:
Jason S. Howell, Noel J. Walkington (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.
Soren Jensen (1991)
Numerische Mathematik
Similarity:
G. Wittum (1989)
Numerische Mathematik
Similarity:
R. Glowinski, Y. Achdou, ... (1992)
Numerische Mathematik
Similarity:
Jie Shen (1992)
Numerische Mathematik
Similarity:
S. Mas-Gallic, G.H. Cottet (1990)
Numerische Mathematik
Similarity:
M.D. Gunzburger, J.S. Peterson (1983)
Numerische Mathematik
Similarity:
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
Michael Wiegner (2003)
Banach Center Publications
Similarity:
M. Dobrowolski (1980/81)
Numerische Mathematik
Similarity:
T.A. Porsching (1977/1978)
Numerische Mathematik
Similarity:
Giovanni Prouse (1971)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
Si dà la dimostrazione del Teorema 1 enunciato nella Nota I.