Dual-mixed finite element methods for the Navier-Stokes equations

Jason S. Howell; Noel J. Walkington

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 3, page 789-805
  • ISSN: 0764-583X

Abstract

top
A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.

How to cite

top

Howell, Jason S., and Walkington, Noel J.. "Dual-mixed finite element methods for the Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.3 (2013): 789-805. <http://eudml.org/doc/273218>.

@article{Howell2013,
abstract = {A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.},
author = {Howell, Jason S., Walkington, Noel J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Navier–Stokes equations; mixed methods; Navier-Stokes equations},
language = {eng},
number = {3},
pages = {789-805},
publisher = {EDP-Sciences},
title = {Dual-mixed finite element methods for the Navier-Stokes equations},
url = {http://eudml.org/doc/273218},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Howell, Jason S.
AU - Walkington, Noel J.
TI - Dual-mixed finite element methods for the Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 3
SP - 789
EP - 805
AB - A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.
LA - eng
KW - Navier–Stokes equations; mixed methods; Navier-Stokes equations
UR - http://eudml.org/doc/273218
ER -

References

top
  1. [1] D.N. Arnold, F. Brezzi and J. Douglas, Jr., PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math.1 (1984) 347–367. Zbl0633.73074MR840802
  2. [2] D.N. Arnold, J. Douglas, Jr. and C.P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math.45 (1984) 1–22. Zbl0558.73066MR761879
  3. [3] D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76 (2007) 1699–1723 (electronic). Zbl1118.74046MR2336264
  4. [4] J. Barlow, Optimal stress location in finite element method. Internat. J. Numer. Methods Engrg.10 (1976) 243–251. Zbl0322.73049
  5. [5] D. Boffi, F. Brezzi, L.F. Demkowicz, R.G. Durán, R.S. Falk and M. Fortin, Mixed finite elements, compatibility conditions, and applications, Springer-Verlag, Berlin. Lect. Notes Math. 1939 (2008). Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, edited by Boffi and Lucia Gastaldi. Zbl1138.65001MR2459075
  6. [6] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal.8 (2009) 95–121. Zbl1154.74041MR2449101
  7. [7] F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math.47 (1985) 217–235. Zbl0599.65072MR799685
  8. [8] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Comput. Math. Springer-Verlag, New York 15 (1991). Zbl0788.73002MR1115205
  9. [9] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980/81) 1–25. Zbl0488.65021MR595803
  10. [10] Z. Cai, C. Wang and S. Zhang, Mixed finite element methods for incompressible flow: stationary Navier-Stokes equations. SIAM J. Numer. Anal.48 (2010) 79–94. Zbl05858676MR2608359
  11. [11] Z. Cai and Y. Wang, Pseudostress-velocity formulation for incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids63 (2010) 341–356. Zbl05712411MR2662525
  12. [12] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér.9 (1975) 77–84. Zbl0368.65008
  13. [13] B. Cockburn, J. Gopalakrishnan and J. Guzmán, A new elasticity element made for enforcing weak stress symmetry. Math. Comput.79 (2010) 1331–1349. Zbl05776269MR2629995
  14. [14] M. Farhloul and H. Manouzi, Analysis of non-singular solutions of a mixed Navier-Stokes formulation. Comput. Methods Appl. Mech. Engrg.129 (1996) 115–131. Zbl0865.76039MR1376913
  15. [15] M. Farhloul, S. Nicaise and L. Paquet, A refined mixed finite-element method for the stationary Navier-Stokes equations with mixed boundary conditions. IMA J. Numer. Anal.28 (2008) 25–45. Zbl1166.76028MR2387904
  16. [16] M. Farhloul, S. Nicaise and L. Paquet, A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem. Numer. Methods Partial Differ. Equ.25 (2009) 843–869. Zbl1166.76027MR2526985
  17. [17] V. Girault and P.A. Raviart, Finite Element Approximation of the Navier Stokes Equations. Springer Verlag, Berlin, Heidelbert, New York. Lect. Notes Math. 749 (1979). Zbl0413.65081MR548867
  18. [18] J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble, IMA J. Numer. Anal.32 (2012) 352–372. Zbl1232.74101MR2875255
  19. [19] J.S. Howell and N.J. Walkington, Inf-sup conditions for twofold saddle point problems. Numer. Math.118 (2011) 663–693. Zbl1230.65128MR2822495
  20. [20] W. Layton, Introduction to the numerical analysis of incompressible viscous flows, Computational Science & Engineering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 6 (2008). Zbl1153.76002MR2442411
  21. [21] P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Springer, Berlin. Lect. Notes Math. 606 (1977) 292–315. Zbl0362.65089MR483555
  22. [22] L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér.19 (1985) 111–143. Zbl0608.65013MR813691
  23. [23] A. Shapiro, The use of an exact solution of the navier-stokes equations in a validation test of a three-dimensional non-hydrostatic numerical model. Mon. Wea. Rev.121 (1993) 2420–2425. 
  24. [24] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI 49 (1997). Zbl0870.35004MR1422252
  25. [25] R. Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math. Comput.42 (1984) 9–23. Zbl0535.76037MR725982
  26. [26] R. Stenberg, A family of mixed finite elements for the elasticity problem. Numer. Math.53 (1988) 513–538. Zbl0632.73063MR954768
  27. [27] R. Temam, Navier-Stokes Equations, North Holland (1977). Zbl0383.35057MR609732
  28. [28] S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput.74 (2005) 543–554. Zbl1085.76042MR2114637
  29. [29] Z. Zhang, Ultraconvergence of the patch recovery technique. Math. Comput.65 (1996) 1431–1437. Zbl0853.65116MR1370858
  30. [30] O.C. Zienkiewicz, R. Taylor and J. Too, Reduced integration technique in general analysis of plates and shells. Inter. J. Numer. Methods Engrg.3 (1971) 275–290. Zbl0253.73048
  31. [31] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates I. The recovery technique. Internat. J. Numer. Methods Engrg. 33 (1992) 1331–1364. Zbl0769.73084MR1161557
  32. [32] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity. Inter. J. Numer. Methods Engrg. 33 (1992) 1365–1382. Zbl0769.73085MR1161558
  33. [33] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg. 101 (1992) 207–224. Reliability in computational mechanics (Kraków 1991). Zbl0779.73078MR1195585

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.