Numerical Solution of Integral Equations, Fast Algorithms and Krein-Sobolev Equation.
I. Gohberg, I. Koltracht (1985)
Numerische Mathematik
Similarity:
I. Gohberg, I. Koltracht (1985)
Numerische Mathematik
Similarity:
Petteri Harjulehto, Peter Hästö, Mika Koskenoja, Susanna Varonen (2005)
Banach Center Publications
Similarity:
In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.
Andrea Cianchi, Nicola Fusco, F. Maggi, A. Pratelli (2009)
Journal of the European Mathematical Society
Similarity:
Ershov, Yu.L., Kutateladze, S.S. (2009)
Sibirskij Matematicheskij Zhurnal
Similarity:
Kutateladze, S.S. (2001)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
Similarity:
V. M. Tikhomirov (1989)
Banach Center Publications
Similarity:
Crăciunaş, Petru Teodor (1996)
General Mathematics
Similarity:
A. Pełczyński, K. Senator (1986)
Studia Mathematica
Similarity:
Kilpeläinen, Tero (1994)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Ershov, Yu.L., Kutateladze, S.S., Tajmanov, I.A. (2007)
Sibirskij Matematicheskij Zhurnal
Similarity:
Valentino Magnani (2005)
Studia Mathematica
Similarity:
In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev-Poincaré inequality and the so-called representation formula.
Toni Heikkinen, Pekka Koskela, Heli Tuominen (2007)
Studia Mathematica
Similarity:
We define a Sobolev space by means of a generalized Poincaré inequality and relate it to a corresponding space based on upper gradients.
Mizuta, Yoshihiro (1995)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Miroslav Krbec, Hans-Jürgen Schmeisser (2011)
Banach Center Publications
Similarity:
We survey recent dimension-invariant imbedding theorems for Sobolev spaces.
A. Benedek, R. Panzone (1990)
Colloquium Mathematicae
Similarity:
Igor Leite Freire (2021)
Communications in Mathematics
Similarity:
We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.
Mahavier, W.T. (1997)
Abstract and Applied Analysis
Similarity:
Alicja Gąsiorowska (2011)
Banach Center Publications
Similarity:
We prove asymptotic formulas for the behavior of Gelfand and Kolmogorov numbers of Sobolev embeddings between Besov and Triebel-Lizorkin spaces of radial distributions. Our method works also for Weyl numbers.
Jiří Rákosník (1989)
Banach Center Publications
Similarity: