A look on some results about Camassa–Holm type equations

Igor Leite Freire

Communications in Mathematics (2021)

  • Issue: 1, page 115-130
  • ISSN: 1804-1388

Abstract

top
We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.

How to cite

top

Freire, Igor Leite. "A look on some results about Camassa–Holm type equations." Communications in Mathematics (2021): 115-130. <http://eudml.org/doc/298058>.

@article{Freire2021,
abstract = {We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.},
author = {Freire, Igor Leite},
journal = {Communications in Mathematics},
keywords = {Invariance; Sobolev norm; peakon solutions; Camassa--Holm equation; Novikov equation},
language = {eng},
number = {1},
pages = {115-130},
publisher = {University of Ostrava},
title = {A look on some results about Camassa–Holm type equations},
url = {http://eudml.org/doc/298058},
year = {2021},
}

TY - JOUR
AU - Freire, Igor Leite
TI - A look on some results about Camassa–Holm type equations
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
IS - 1
SP - 115
EP - 130
AB - We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.
LA - eng
KW - Invariance; Sobolev norm; peakon solutions; Camassa--Holm equation; Novikov equation
UR - http://eudml.org/doc/298058
ER -

References

top
  1. Anco, S., Bluman, G., 10.1017/S095679250100465X, European J. Appl. Math., 13, 5, 2002, 545-566, (2002) MR1939160DOI10.1017/S095679250100465X
  2. Anco, S., Bluman, G., 10.1017/S0956792501004661, European J. Appl. Math., 13, 5, 2002, 567-585, (2002) MR1939161DOI10.1017/S0956792501004661
  3. Anco, S., Silva, P.L. da, Freire, I.L., 10.1063/1.4929661, J. Math. Phys., 56, 9, 2015, paper 091506, (2015) MR3395277DOI10.1063/1.4929661
  4. Bluman, G.W., Anco, S., Symmetry and Integration Methods for Differential Equations, 2002, Applied Mathematical Sciences 154. Springer, New York, (2002) MR1914342
  5. Bluman, G.W., Kumei, S., 10.1007/978-1-4757-4307-4, 1989, Applied Mathematical Sciences 81. Springer, New York, (1989) Zbl0698.35001MR1006433DOI10.1007/978-1-4757-4307-4
  6. Bozhkov, Y., Freire, I.L., Ibragimov, N., 10.1007/s40314-013-0055-1, Comput. Appl. Math., 33, 1, 2014, 193-202, (2014) MR3187981DOI10.1007/s40314-013-0055-1
  7. Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Universitext. Springer, New York, (2011) Zbl1220.46002MR2759829
  8. Camassa, R., Holm, D.D., 10.1103/PhysRevLett.71.1661, Phys. Rev. Lett., 71, 11, 1993, 1661-1664, (1993) MR1234453DOI10.1103/PhysRevLett.71.1661
  9. Clarkson, P.A., Mansfield, E.L., Priestley, T.J., 10.1016/S0895-7177(97)00069-1, Math. Comput. Modelling., 25, 8-9, 1997, 195-212, (1997) MR1465776DOI10.1016/S0895-7177(97)00069-1
  10. Constantin, A., Escher, J., 10.1007/BF02392586, Acta Math., 181, 2, 1998, 229-243, (1998) MR1668586DOI10.1007/BF02392586
  11. Constantin, A., Strauss, W.A., 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L, Comm. Pure Appl. Math., 53, 5, 2000, 603-610, (2000) MR1737505DOI10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
  12. Constantin, A., 10.5802/aif.1757, Ann. Inst. Fourier, 50, 2, 2000, 321-362, (2000) MR1775353DOI10.5802/aif.1757
  13. Constantin, A., Escher, J., Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26, 2, 1998, 303-328, (1998) MR1631589
  14. Silva, P.L. da, Freire, I.L., Strict self-adjointness and shallow water models, arXiv:, 1312.3992, 2013, Preprint.. (2013) 
  15. Silva, P.L. da, Freire, I.L., 10.1007/978-3-319-12307-3_23, Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer Proceedings in Mathematics & Statistics, 117, 2015, 161-166, Springer, DOI: 10.1007/978-3-319-12307-3_23. (2015) MR3444170DOI10.1007/978-3-319-12307-3_23
  16. Silva, P.L. da, Freire, I.L., 10.3934/proc.2015.0304, Dynamical Systems and Differential Equations, Proceedings of the 10th AIMS International Conference, 2015, 304-311, American Institute of Mathematical Sciences, DOI: 10.3934/proc.2015.0304. (2015) MR3462461DOI10.3934/proc.2015.0304
  17. Silva, P.L. da, Freire, I.L., Uma nova equação unificando quatro modelos físicos, Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 3, 2, 2015, In Portuguese.. (2015) 
  18. Silva, P.L. da, Freire, I.L., Sampaio, J.C.S., A family of wave equations with some remarkable properties, Proc. A, 474, 2210, 2018, paper 20170763, (2018) MR3782781
  19. Silva, P.L. da, Freire, I.L., 10.1016/j.jde.2019.05.033, J. Differential Equations, 267, 9, 2019, 5318-5369, (2019) MR3991561DOI10.1016/j.jde.2019.05.033
  20. Degasperis, A., Procesi, M., Asymptotic integrability, Symmetry and Perturbation Theory, World Scientific Publishing, River Edge, NJ, 1999, 23-37, (1999) MR1844104
  21. Degasperis, A., Holm, D.D., Hone, A.N.W., 10.1023/A:1021186408422, Theoret. and Math. Phys., 133, 2, 2002, 1463-1474, Translated from Russian.. (2002) MR2001531DOI10.1023/A:1021186408422
  22. Degasperis, A., Holm, D.D., Hone, A.N.W., Integrable and non-integrable equations with peakons, Nonlinear Physics: Theory and Experiment, II (Gallipoli, 2002), 2003, 37-43, World Scientific Publishing, River Edge, NJ, See arXiv:nlin/0209008.. (2003) MR2028761
  23. Escher, J., 10.1007/978-3-319-31462-4_2, Nonlinear Water Waves, Lecture Notes in Mathematics, vol. 2158, 2016, 83-119, Springer, Switzerland, DOI: 10.1007/978-3-319-31462-4_2. (2016) MR3524896DOI10.1007/978-3-319-31462-4_2
  24. Fokas, A.S., Fuchssteiner, B., Sympletic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4, 1, 1981/82, 47-66, (1981) MR0636470
  25. Folland, G.B., Introduction to partial differential equations. Second edition, 1995, Princeton University Press, Princeton, NJ, (1995) MR1357411
  26. Hay, M., Hone, A.N.W., Novikov, V.S., Wang, J.P., 10.3934/jgm.2019028, J. Geom. Mech., 11, 4, 2019, 561-573, (2019) MR4043678DOI10.3934/jgm.2019028
  27. Himonas, A.A., Holliman, C., The Cauchy problem for a generalized Camassa--Holm equation, Adv. Differential Equations, 19, 1-2, 2014, 161-200, (2014) MR3161659
  28. Holm, D.D., Staley, M.F., 10.1137/S1111111102410943, SIAM J. Appl. Dyn. Syst., 2, 3, 2003, 323-380, (2003) MR2031278DOI10.1137/S1111111102410943
  29. Hone, A.N.W., Wang, J.P., 10.1088/1751-8113/41/37/372002, J. Phys. A, 41, 37, 2008, paper 372002, (2008) MR2430566DOI10.1088/1751-8113/41/37/372002
  30. Hone, A.N.W., Lundmark, H., Szmigielski, J., 10.4310/DPDE.2009.v6.n3.a3, Dyn. Partial Differ. Equ., 6, 3, 2009, 253-289, (2009) MR2569508DOI10.4310/DPDE.2009.v6.n3.a3
  31. Hunter, J.K., Nachtergaele, B., Applied Analysis, 2005, World Scientific Publishing, Singapore, (2005) MR1829589
  32. Ibragimov, N.H., Transformation Groups Applied to Mathematical Physics, 1985, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, Translated from Russian.. (1985) MR0785566
  33. Ibragimov, N.H., Elementary Lie Group Analysis and Ordinary Differential Equations, 1999, Wiley Series in Mathematical Methods in Practice, 4. John Wiley & Sons, Chichester, (1999) MR1679646
  34. Krasil'shchik, J., Verbovetsky, A., Vitolo, R., The Symbolic Computation of Integrability Structures for Partial Differential Equations, 2017, Texts and Monographs in Symbolic Computation. Springer, Cham, (2017) MR3753682
  35. Lenells, J., 10.1088/0305-4470/38/4/007, J. Phys. A, 38, 4, 2005, 869-880, (2005) MR2125239DOI10.1088/0305-4470/38/4/007
  36. Lenells, J., 10.1016/j.jde.2004.09.007, J. Differential Equations, 217, 2, 2005, 393-430, (2005) MR2168830DOI10.1016/j.jde.2004.09.007
  37. Mikhailov, A.V., Novikov, V.S., 10.1088/0305-4470/35/22/309, J. Phys. A, 35, 22, 2002, 4775-4790, (2002) MR1908645DOI10.1088/0305-4470/35/22/309
  38. Mikhailov, A.V., Sokolov, V.V., 10.1007/978-3-540-88111-7_2, Integrability, Lecture Notes in Phys., vol. 767, 2009, 19-88, Springer, Berlin, (2009) MR2867546DOI10.1007/978-3-540-88111-7_2
  39. Novikov, V.S., 10.1088/1751-8113/42/34/342002, J. Phys. A, 42, 34, 2009, 342002, (2009) MR2530232DOI10.1088/1751-8113/42/34/342002
  40. Olver, P.J., 10.1063/1.523393, J. Mathematical Phys., 18, 6, 1977, 1212-1215, (1977) MR0521611DOI10.1063/1.523393
  41. Olver, P.J., Applications of Lie Groups to Differential Equations. Second edition, 1993, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, (1993) MR1240056
  42. Popovych, R.O., Sergyeyev, A., 10.1016/j.physleta.2010.03.033, Phys. Lett. A, 374, 22, 2010, 2210-2217, (2010) MR2629731DOI10.1016/j.physleta.2010.03.033
  43. Popovych, R.O., Bihlo, A., 10.1016/j.physd.2019.132175, Phys. D, 401, 2020, paper 132175, (2020) MR4034667DOI10.1016/j.physd.2019.132175
  44. M.E.Taylor, Partial Differential Equations I. Basic Theory. Second edition, 2011, Applied Mathematical Sciences, 115. Springer, New York, (2011) MR2744150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.