A look on some results about Camassa–Holm type equations
Communications in Mathematics (2021)
- Issue: 1, page 115-130
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topFreire, Igor Leite. "A look on some results about Camassa–Holm type equations." Communications in Mathematics (2021): 115-130. <http://eudml.org/doc/298058>.
@article{Freire2021,
abstract = {We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.},
author = {Freire, Igor Leite},
journal = {Communications in Mathematics},
keywords = {Invariance; Sobolev norm; peakon solutions; Camassa--Holm equation; Novikov equation},
language = {eng},
number = {1},
pages = {115-130},
publisher = {University of Ostrava},
title = {A look on some results about Camassa–Holm type equations},
url = {http://eudml.org/doc/298058},
year = {2021},
}
TY - JOUR
AU - Freire, Igor Leite
TI - A look on some results about Camassa–Holm type equations
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
IS - 1
SP - 115
EP - 130
AB - We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.
LA - eng
KW - Invariance; Sobolev norm; peakon solutions; Camassa--Holm equation; Novikov equation
UR - http://eudml.org/doc/298058
ER -
References
top- Anco, S., Bluman, G., 10.1017/S095679250100465X, European J. Appl. Math., 13, 5, 2002, 545-566, (2002) MR1939160DOI10.1017/S095679250100465X
- Anco, S., Bluman, G., 10.1017/S0956792501004661, European J. Appl. Math., 13, 5, 2002, 567-585, (2002) MR1939161DOI10.1017/S0956792501004661
- Anco, S., Silva, P.L. da, Freire, I.L., 10.1063/1.4929661, J. Math. Phys., 56, 9, 2015, paper 091506, (2015) MR3395277DOI10.1063/1.4929661
- Bluman, G.W., Anco, S., Symmetry and Integration Methods for Differential Equations, 2002, Applied Mathematical Sciences 154. Springer, New York, (2002) MR1914342
- Bluman, G.W., Kumei, S., 10.1007/978-1-4757-4307-4, 1989, Applied Mathematical Sciences 81. Springer, New York, (1989) Zbl0698.35001MR1006433DOI10.1007/978-1-4757-4307-4
- Bozhkov, Y., Freire, I.L., Ibragimov, N., 10.1007/s40314-013-0055-1, Comput. Appl. Math., 33, 1, 2014, 193-202, (2014) MR3187981DOI10.1007/s40314-013-0055-1
- Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Universitext. Springer, New York, (2011) Zbl1220.46002MR2759829
- Camassa, R., Holm, D.D., 10.1103/PhysRevLett.71.1661, Phys. Rev. Lett., 71, 11, 1993, 1661-1664, (1993) MR1234453DOI10.1103/PhysRevLett.71.1661
- Clarkson, P.A., Mansfield, E.L., Priestley, T.J., 10.1016/S0895-7177(97)00069-1, Math. Comput. Modelling., 25, 8-9, 1997, 195-212, (1997) MR1465776DOI10.1016/S0895-7177(97)00069-1
- Constantin, A., Escher, J., 10.1007/BF02392586, Acta Math., 181, 2, 1998, 229-243, (1998) MR1668586DOI10.1007/BF02392586
- Constantin, A., Strauss, W.A., 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L, Comm. Pure Appl. Math., 53, 5, 2000, 603-610, (2000) MR1737505DOI10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
- Constantin, A., 10.5802/aif.1757, Ann. Inst. Fourier, 50, 2, 2000, 321-362, (2000) MR1775353DOI10.5802/aif.1757
- Constantin, A., Escher, J., Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26, 2, 1998, 303-328, (1998) MR1631589
- Silva, P.L. da, Freire, I.L., Strict self-adjointness and shallow water models, arXiv:, 1312.3992, 2013, Preprint.. (2013)
- Silva, P.L. da, Freire, I.L., 10.1007/978-3-319-12307-3_23, Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer Proceedings in Mathematics & Statistics, 117, 2015, 161-166, Springer, DOI: 10.1007/978-3-319-12307-3_23. (2015) MR3444170DOI10.1007/978-3-319-12307-3_23
- Silva, P.L. da, Freire, I.L., 10.3934/proc.2015.0304, Dynamical Systems and Differential Equations, Proceedings of the 10th AIMS International Conference, 2015, 304-311, American Institute of Mathematical Sciences, DOI: 10.3934/proc.2015.0304. (2015) MR3462461DOI10.3934/proc.2015.0304
- Silva, P.L. da, Freire, I.L., Uma nova equação unificando quatro modelos físicos, Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 3, 2, 2015, In Portuguese.. (2015)
- Silva, P.L. da, Freire, I.L., Sampaio, J.C.S., A family of wave equations with some remarkable properties, Proc. A, 474, 2210, 2018, paper 20170763, (2018) MR3782781
- Silva, P.L. da, Freire, I.L., 10.1016/j.jde.2019.05.033, J. Differential Equations, 267, 9, 2019, 5318-5369, (2019) MR3991561DOI10.1016/j.jde.2019.05.033
- Degasperis, A., Procesi, M., Asymptotic integrability, Symmetry and Perturbation Theory, World Scientific Publishing, River Edge, NJ, 1999, 23-37, (1999) MR1844104
- Degasperis, A., Holm, D.D., Hone, A.N.W., 10.1023/A:1021186408422, Theoret. and Math. Phys., 133, 2, 2002, 1463-1474, Translated from Russian.. (2002) MR2001531DOI10.1023/A:1021186408422
- Degasperis, A., Holm, D.D., Hone, A.N.W., Integrable and non-integrable equations with peakons, Nonlinear Physics: Theory and Experiment, II (Gallipoli, 2002), 2003, 37-43, World Scientific Publishing, River Edge, NJ, See arXiv:nlin/0209008.. (2003) MR2028761
- Escher, J., 10.1007/978-3-319-31462-4_2, Nonlinear Water Waves, Lecture Notes in Mathematics, vol. 2158, 2016, 83-119, Springer, Switzerland, DOI: 10.1007/978-3-319-31462-4_2. (2016) MR3524896DOI10.1007/978-3-319-31462-4_2
- Fokas, A.S., Fuchssteiner, B., Sympletic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4, 1, 1981/82, 47-66, (1981) MR0636470
- Folland, G.B., Introduction to partial differential equations. Second edition, 1995, Princeton University Press, Princeton, NJ, (1995) MR1357411
- Hay, M., Hone, A.N.W., Novikov, V.S., Wang, J.P., 10.3934/jgm.2019028, J. Geom. Mech., 11, 4, 2019, 561-573, (2019) MR4043678DOI10.3934/jgm.2019028
- Himonas, A.A., Holliman, C., The Cauchy problem for a generalized Camassa--Holm equation, Adv. Differential Equations, 19, 1-2, 2014, 161-200, (2014) MR3161659
- Holm, D.D., Staley, M.F., 10.1137/S1111111102410943, SIAM J. Appl. Dyn. Syst., 2, 3, 2003, 323-380, (2003) MR2031278DOI10.1137/S1111111102410943
- Hone, A.N.W., Wang, J.P., 10.1088/1751-8113/41/37/372002, J. Phys. A, 41, 37, 2008, paper 372002, (2008) MR2430566DOI10.1088/1751-8113/41/37/372002
- Hone, A.N.W., Lundmark, H., Szmigielski, J., 10.4310/DPDE.2009.v6.n3.a3, Dyn. Partial Differ. Equ., 6, 3, 2009, 253-289, (2009) MR2569508DOI10.4310/DPDE.2009.v6.n3.a3
- Hunter, J.K., Nachtergaele, B., Applied Analysis, 2005, World Scientific Publishing, Singapore, (2005) MR1829589
- Ibragimov, N.H., Transformation Groups Applied to Mathematical Physics, 1985, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, Translated from Russian.. (1985) MR0785566
- Ibragimov, N.H., Elementary Lie Group Analysis and Ordinary Differential Equations, 1999, Wiley Series in Mathematical Methods in Practice, 4. John Wiley & Sons, Chichester, (1999) MR1679646
- Krasil'shchik, J., Verbovetsky, A., Vitolo, R., The Symbolic Computation of Integrability Structures for Partial Differential Equations, 2017, Texts and Monographs in Symbolic Computation. Springer, Cham, (2017) MR3753682
- Lenells, J., 10.1088/0305-4470/38/4/007, J. Phys. A, 38, 4, 2005, 869-880, (2005) MR2125239DOI10.1088/0305-4470/38/4/007
- Lenells, J., 10.1016/j.jde.2004.09.007, J. Differential Equations, 217, 2, 2005, 393-430, (2005) MR2168830DOI10.1016/j.jde.2004.09.007
- Mikhailov, A.V., Novikov, V.S., 10.1088/0305-4470/35/22/309, J. Phys. A, 35, 22, 2002, 4775-4790, (2002) MR1908645DOI10.1088/0305-4470/35/22/309
- Mikhailov, A.V., Sokolov, V.V., 10.1007/978-3-540-88111-7_2, Integrability, Lecture Notes in Phys., vol. 767, 2009, 19-88, Springer, Berlin, (2009) MR2867546DOI10.1007/978-3-540-88111-7_2
- Novikov, V.S., 10.1088/1751-8113/42/34/342002, J. Phys. A, 42, 34, 2009, 342002, (2009) MR2530232DOI10.1088/1751-8113/42/34/342002
- Olver, P.J., 10.1063/1.523393, J. Mathematical Phys., 18, 6, 1977, 1212-1215, (1977) MR0521611DOI10.1063/1.523393
- Olver, P.J., Applications of Lie Groups to Differential Equations. Second edition, 1993, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, (1993) MR1240056
- Popovych, R.O., Sergyeyev, A., 10.1016/j.physleta.2010.03.033, Phys. Lett. A, 374, 22, 2010, 2210-2217, (2010) MR2629731DOI10.1016/j.physleta.2010.03.033
- Popovych, R.O., Bihlo, A., 10.1016/j.physd.2019.132175, Phys. D, 401, 2020, paper 132175, (2020) MR4034667DOI10.1016/j.physd.2019.132175
- M.E.Taylor, Partial Differential Equations I. Basic Theory. Second edition, 2011, Applied Mathematical Sciences, 115. Springer, New York, (2011) MR2744150
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.