Displaying similar documents to “Periodic solutions to Maxwell equations in nonlinear media”

The existence and uniqueness theorem in Biot's consolidation theory

Alexander Ženíšek (1984)

Aplikace matematiky

Similarity:

Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.

On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation

Michal Křížek, Pekka Neittaanmäki (1989)

Aplikace matematiky

Similarity:

The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.

Equations of magnetohydrodynamics of compressible fluid: Periodic solutions

Milan Štědrý, Otto Vejvoda (1985)

Aplikace matematiky

Similarity:

The authors prove the global existence and exponential stability of solutions of the given system of equations under the condition that the initial velocities and the external forces are small and the initial density is not far from a constant one. If the external forces are periodic, then solutions periodic with the same period are obtained. The investigated system of equations is a bit non-standard - for example the displacement current in the Maxwell equations is not neglected. ...

Solvability of a first order system in three-dimensional non-smooth domains

Michal Křížek, Pekka Neittaanmäki (1985)

Aplikace matematiky

Similarity:

A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain Ω 𝐑 3 . On the boundary δ Ω , the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated.