Displaying similar documents to “Porosity, derived numbers and knot points of typical continuous functions”

Local moves on knots and products of knots

Louis H. Kauffman, Eiji Ogasa (2014)

Banach Center Publications

Similarity:

We show a relation between products of knots, which are generalized from the theory of isolated singularities of complex hypersurfaces, and local moves on knots in all dimensions. We discuss the following problem. Let K be a 1-knot which is obtained from another 1-knot J by a single crossing change (resp. pass-move). For a given knot A, what kind of relation do the products of knots, K ⊗ A and J ⊗ A, have? We characterize these kinds of relation between K ⊗ A and J ⊗ A by using local...

Unknotting number and knot diagram.

Yasutaka Nakanishi (1996)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

This note is a continuation of a former paper, where we have discussed the unknotting number of knots with respect to knot diagrams. We will show that for every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knot there exist crossings whose exchange yields the trivial knot, if the third Tait conjecture is true.

Applications of topology to DNA

Isabel Darcy, De Sumners (1998)

Banach Center Publications

Similarity:

The following is an expository article meant to give a simplified introduction to applications of topology to DNA.

Lissajous knots and billiard knots

Vaughan Jones, Józef Przytycki (1998)

Banach Center Publications

Similarity:

We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.

On slice knots in the complex projective plane.

Akira Yasuhara (1992)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

We investigate the knots in the boundary of the punctured complex projective plane. Our result gives an affirmative answer to a question raised by Suzuki. As an application, we answer to a question by Mathieu.