Lissajous knots and billiard knots

Vaughan Jones; Józef Przytycki

Banach Center Publications (1998)

  • Volume: 42, Issue: 1, page 145-163
  • ISSN: 0137-6934

Abstract

top
We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.

How to cite

top

Jones, Vaughan, and Przytycki, Józef. "Lissajous knots and billiard knots." Banach Center Publications 42.1 (1998): 145-163. <http://eudml.org/doc/208802>.

@article{Jones1998,
abstract = {We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.},
author = {Jones, Vaughan, Przytycki, Józef},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {145-163},
title = {Lissajous knots and billiard knots},
url = {http://eudml.org/doc/208802},
volume = {42},
year = {1998},
}

TY - JOUR
AU - Jones, Vaughan
AU - Przytycki, Józef
TI - Lissajous knots and billiard knots
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 145
EP - 163
AB - We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.
LA - eng
UR - http://eudml.org/doc/208802
ER -

References

top
  1. [BHJS94] M. G. V. Bogle, J. E. Hearst, V. F. R. Jones and L. Stoilov, Lissajous knots, Journal of Knot Theory and Its Ramifications 3 (1994), 121-140. Zbl0834.57005
  2. [BGKT94] M. Boshernitzan, G. Galperin, T. Kröger and S. Troubetzkoy, Some remarks on periodic billiard orbits in rational polygons, preprint, SUNY Stony Brook, 1994. 
  3. [Cro95] P. Cromwell, Borromean triangles in Viking art, Math. Int. 17 (1995), 3-4. 
  4. [GKT94] G. Galperin, T. Kröger and S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. (1994). 
  5. [GSV92] G. Galperin, A. Stepin and Ya. B. Vorobets, Periodic billiard trajectories in polygons: generation mechanisms, Russian Math. Surveys 47 (3) (1992), 5-80. Zbl0777.58031
  6. [HK79] R. Hartley and A. Kawauchi, Polynomials of amphicheiral knots, Math. Ann. 243 (1979). Zbl0394.57009
  7. [KMS86] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124 (1986), 293-311. Zbl0637.58010
  8. [Mu71] K. Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162-174. Zbl0206.25603
  9. [Pr95] J. H. Przytycki, Symmetry of knots: Lissajous and billiard knots, notes from a talk given at the Subfactor Seminar, U.C. Berkeley, May 1995. 
  10. [Re91] A. W. Reid, Arithmeticity of knot complements, J. London Math. Soc. (2) 43 (1991), 171-184. Zbl0847.57013
  11. [Ro76] D. Rolfsen, Knots and links, Publish or Perish, 1976. 
  12. [Ta95] S. Tabachnikov, Billiards. The Survey, preprint, 1995. 
  13. [Wi53] R. Wichterman, The biology of Paramecium, The Blakiston Company, Inc., New York, Toronto, 1953. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.